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Abstract Botanic gardens and arboreta, particularly in regions where iconic relict trees

naturally occur, play a vital role in the conservation of these species. Maintaining well-

managed living ex situ collections of rare and threatened relict tree species provides an

immediate insurance policy for the future species conservation. The aim of this research

was to investigate the origin, representativeness and genetic diversity of relict trees kept in

botanic gardens and arboreta. We used as a model two ecologically and biogeographically

distinct members of the prominent relict genus Zelkova (Ulmaceae), which survived the

last glaciation in disjunct and isolated refugial regions: Z. carpinifolia in Transcaucasia and

Z. abelicea endemic to Crete (Greece) in the Mediterranean. Our study revealed substantial

differences in the genetic diversity and the origin of living ex situ collections of the two
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investigated taxa. The living ex situ collections of Z. carpinifolia have relatively high

representativeness compared with the global genetic variability of natural stands identified

in a previous study. In contrast, Z. abelicea, which possesses an extraordinarily high

genetic variability in natural populations, is clearly underrepresented in botanic garden

collections. Moreover, all Z. abelicea trees investigated in this study most probably

originated from a single region, the Levka Ori in western Crete. Thus, the ex situ con-

servation of Z. abelicea requires major planning and coordination efforts, including the

establishment of well-documented collections in botanic gardens in Greece and especially

on Crete. New living ex situ collections should be created using plant material collected

from all of the mountain regions where Z. abelicea still occurs. Our study highlights the

need for re-evaluating the existing living ex situ collections of trees and the development

of new strategies for future conservation efforts in botanic gardens and arboreta. The

coordination of conservation efforts between gardens must be enhanced to prioritize

actions for the most threatened relict tree species.

Keywords Botanic gardens � Chloroplast markers � Conservation strategy �
Living ex situ collections � Genetic diversity

Introduction

Recent molecular data and phylogeographic analyses demonstrate that tree species rep-

resent a remarkable evolutionary heritage for the conservation of plant diversity (Petit et al.

2005). Among them, relict tree species provide a unique opportunity to understand past and

recent biogeographical and evolutionary processes. Their scientific value is therefore

inestimable (Connor 2009).

Although relict tree species have attracted the attention of scientists for many centuries

and their cultivation in botanic gardens and arboreta has a long tradition (Maunder et al.

2004), most collections were not established with conservation purposes in mind. In the

past, much of the interest focused on the exploitation of trees with economic or ornamental

potential. Only in the last half of the twentieth century did living ex situ collections gain

substantial interest as conservation tools (Donaldson 2009). Today, the ex situ conservation

of components of biological diversity is perceived as one of the most important methods

for preserving species and is complementary to in situ conservation (Maunder et al. 2004;

Primack 2004). However, the notorious lack of resources limits the ex situ conservation of

rare and threatened plants in botanic gardens, especially long lived and large trees (Oldfield

2009; Wyse Jackson and Kennedy 2009; BGCI 2010).
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The maintenance of living ex situ collections has saved many endangered relict tree

species from extinction, with the most illustrative example being Ginkgo biloba (Chaw

et al. 2000; Oldfield 2009). The same conservation strategy was undertaken after the

discovery of the Wollemi Pine (Wollemia nobilis, Araucariaceae) in Australia. Living ex

situ collections of this tree were quickly established, followed by the intensive commercial

breeding and the distribution of young trees to botanic institutions and arboreta across the

world (Trueman et al. 2007). Such ‘‘domestication for conservation’’, although somehow

controversial, should efficiently secure the long-term survival of this ‘living fossil’, for

which fewer than 100 highly threatened individuals still exist in the wild.

Three of the main problems with the living ex situ tree collections kept in botanic

gardens and arboreta are the sizes and origins of these collections, together with their

genetic representativeness (Kozlowski et al. 2012a). Although the need to address these

challenges has been recognized for many years (e.g., Ledig 1988; Cohen et al. 1991; Yang

and Yeh 1992; Etisham-Ul-Haq et al. 2001), no significant improvements have been made

in the last several decades (Ensslin et al. 2011; Rucinska and Puchalski 2011; Kozlowski

et al. 2012a). Namoff et al. (2010) proposed, for example, to collect at least 15 plants,

preferably from 3 populations for the purpose of maintaining genetic diversity. Other

researchers suggested, however, that to establish a genetically representative living ex situ

collection, some 50 populations per species and a minimum of 50 individuals per popu-

lation should be represented per collection (Brown and Marshall 1995).

In the Northern Hemisphere, many relict tree species survived the last glaciation only in

isolated and disjunct refugial regions or on Mediterranean islands (Quézel and Médail

2003; Garfı̀ et al. 2011; Kozlowski and Gratzfeld 2013). The genus Zelkova (Ulmaceae) is

one of these emblematic relicts. Today, this genus comprises six extant species showing a

disjunct distribution: three species occur in eastern Asia (Z. serrata, Z. schneideriana and

Z. sinica), Z. carpinifolia grows in Transcaucasia, and Z. sicula and Z. abelicea occur in the

Mediterranean region (Burnham 1986; Wiegrefe et al. 1998; Zheng-yi and Raven 2003;

Denk and Grimm 2005). In a recent study using two chloroplast and two nuclear molecular

markers on 154 individuals from 30 in situ populations, Christe et al. (2014) showed, that

the three Eurasian species are highly structured according to geography and that both Z.

carpinifolia and Z. abelicea exhibit an important molecular polymorphism. These results

delivered the necessary basis for estimating the genetic representativeness of Zelkova

living ex situ collections.

The present study sought, therefore, to determine how much of the genetic variation

within a relict tree species is captured through living ex situ collections. We concentrated

our investigations on the two Zelkova species from western Eurasia: Z. abelicea, endemic

to Crete (Greece), and Z. carpinifolia, which grows naturally in the Transcaucasian

countries of western Asia (Turkey, Georgia, Armenia, Azerbaijan and Iran; Phitos et al.

1995; Güner and Zielinski 1998; Søndergaard and Egli 2006; Kozlowski and Gratzfeld

2013). These two species differ in many aspects of their biology, ecology and conservation

status. Zelkova abelicea is a mountainous tree growing between 900 and 1,800 m a.s.l.

(Kozlowski et al. 2012a, 2014). Together with Acer sempervirens, Quercus coccifera and

Cupressus sempervirens, it forms small forest remnants, occurring primarily on the north-

facing slopes of the Cretan mountains (Søndergaard and Egli 2006; Fazan et al. 2012;

Bosque et al. 2014). Due to overgrazing by goats and sheep, habitat fragmentation and

destruction, fires and water stress, this species is endangered (IUCN category EN, Koz-

lowski et al. 2012b). Zelkova carpinifolia has a much larger distribution area and is one of

the most characteristic relict tree species of the Transcaucasian sub-tropical region

(Kvavadze and Connor 2005; Kozlowski and Gratzfeld 2013). This area is considered one
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of the most important refugial zones for relict flora worldwide (Milne and Abbott 2002;

Milne 2006). Although locally rare and threatened, Z. carpinifolia still forms relatively

large lowland forests in several parts of its range. It grows there together with other relicts

such as Albizia julibrissin, Diospyros lotus, Parrotia persica, Pterocarya fraxinifolia and

Gleditsia caspica (Browicz and Zielinski 1982; Mai 1995; Kozlowski and Gratzfeld 2013).

The IUCN red list has assigned this species to the category near threatened (NT, Güner and

Zielinski 1998). The third taxon of western Eurasia, Z. sicula from Sicily, was not included

in our study because of its exceptional situation. This narrow endemic tree was discovered

in 1991, and only one population was known worldwide until recently. There are only five

known living ex situ collections in Sicily and abroad, which all originated from this unique

population (Di Pasquale et al. 1992; Garfı̀ 2006). Additionally, all plants are triploid and

show a very low genetic diversity (Christe et al. 2014). They are suspected to reproduce

exclusively clonally (Garfı̀ et al. 2011; Kozlowski and Gratzfeld 2013).

Since Christe et al. (2014) showed that most haplotypes can be assigned geographically

to small regions, we addressed the following specific questions: (1) How do the origins of

the Z. abelicea and Z. carpinifolia trees in living ex situ collections compare with the

locations of wild populations? (2) What is the level of genetic representativeness of the

living ex situ collections compared with the global genetic variability of Z. abelicea and Z.

carpinifolia stands? (3) What is the level of genetic variation in living ex situ collections in

comparison with that in natural populations of both species? (4) Is the most threatened

species, Z. abelicea, well represented and thus safeguarded through living ex situ con-

servation? (5) What is the level of misidentification and errors in living ex situ collections?

The genetic survey presented in this paper sheds light on the shortfalls in the conservation

of relict trees through living ex situ collections. The conclusions are also of wider rele-

vance for other threatened plant species.

Methods

Sampling

Botanic gardens and arboreta with available living ex situ collections were contacted after

a global survey addressing the representativeness of the genus Zelkova in living ex situ

collection (Kozlowski et al. 2012a). Leaf material was received or collected by ourselves in

botanic gardens and arboreta worldwide interested to participate to the study. The focus

was placed on collections that have more than two individuals of at least one of these

species in order to estimate diversity within the institutions. Exceptions were however

considered for Jardins des Plantes et Arboretum de Chevreloup, France, and Conservatoire

et Jardin botanique de la Ville de Genève (CJBG), Switzerland, with only one individual

(see online Appendix). Parc Floraire, Switerland, was not included in the first survey but

was added later on, because of the number and age of the individuals.

After this selection, a total of 31 botanic gardens and arboreta were retained, repre-

senting 119 individuals, among which 100 were labeled as Z. abelicea (31) and Z. car-

pinifolia (69).

The remaining 19 individuals were samples of the three Asian species, Z. serrata (8), Z.

sinica (3) and Z. schneideriana (8) that were used as references, whatever the number of

individuals in botanical collections, as long as the sampling location was known (see online

Appendix). All the samples concerning the three Asian species have already been pub-

lished in the study of Christe et al. (2014).
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DNA extraction, amplification and sequencing

Total genomic DNA was extracted using the NucleoSpin� Plant II kit (Macherey–Nagel)

following the supplier’s instructions. One cpDNA spacer (trnH–psbA; Shaw et al. 2005)

and one cpDNA intron (trnL; Taberlet et al. 1991) were amplified and sequenced. PCR

amplifications and sequencing were performed as indicated in Christe et al. (2014).

Data analyses

All sequences were assembled using the program Sequencher (GeneCodes Corporation,

Ann Arbor, Michigan, USA) and were manually aligned using BIOEDIT 7.0.3.5 (Hall

1999). Chloroplast DNA haplotypes were carefully checked and determined based on the

aligned sequences. This analysis also included the haplotypes found for the in situ popu-

lations of Z. abelicea and Z. carpinifolia and those for ex situ individuals from the three

Asian species of the same genus (Z. schneideriana, Z. serrata and Z. sinica; Christe et al.

2014).

Prior to analysis, indels and inversions, commonly found in trnH-psbA (Whitlock et al.

2010), were manually coded to be counted as single mutation steps using Barriel’s rules

(Barriel 1994). Indel and inversion events were then taken into account in all analyses, as

these events have been shown to provide relevant phylogeographical information (Christe

et al. 2014). Haplotype sequences were submitted to GenBank under accessions numbers

JX399108–JX399112, JX399121–JX399122, JX399136, JX399139–JX399147. The gene

and nucleotide diversities (h and p, respectively) as well as their standard deviations (SD)

were calculated per population and per species using ARLEQUIN version 3.1.5.2 (Ex-

coffier et al. 2005). Gene diversities, that are corrected for sampling size (Nei 1973), were

compared at the species level only, and declared significantly different at the 5 % level

when their confidence intervals (h ± 2SD) did not overlap. In order to compare the number

of haplotypes recorded in situ and ex situ for a given species, a rarefaction method was

used to take into account differences in sample sizes. The rarefaction size was set to 31 and

62 for Z. abelicea and Z carpinifolia, respectively, as the sampling sizes in situ were higher

than ex situ [67 and 77, respectively; Christe et al. (2014)]. The analysis was performed

using the software CONTRIB following Petit et al. (1998). Finally, a median-joining

network of the combined chloroplast haplotypes was constructed using the software

Network (Bandelt et al. 1999).

Results

The two cpDNA loci were aligned and combined. Based on 1,604 bp consensus alignment,

14 haplotypes were detected for Z. abelicea and Z. carpinifolia (Table 1). Among these

haplotypes, eight were already found by Christe et al. (2014), and six were newly

sequenced (Figs. 1, 2).

Zelkova abelicea

A total of 31 individuals from eight botanic gardens were sequenced (see online Appen-

dix). Only two different haplotypes (XJ and X2J) were found, (Fig. 1b). Haplotype XJ was

already known (Christe et al. 2014), but X2J was a newly sequenced haplotype, separated

by four mutations from XJ, VJ and KJ (Fig. 1a). In situ analyses indicate that haplotype XJ
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tä
t

B
er

n
S

w
it

ze
rl

an
d

4
X

2
J(4

)
–

–

G
C

o
n

se
rv

at
o

ir
e

et
Ja

rd
in

b
o

ta
n

iq
u

es
d

e
la

V
il

le
d

e
G

en
èv
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and VJ are present in the western part of the island in the Lefka Ori mountains, (Omalos

Plateau and Eligas gorge, respectively), whereas KJ is only found in the Thrypti mountains,

east of the island. Haplotypes found by Christe et al. (2014) in Kedros, Psiloritis or Dikti

(Central Crete) were not recovered in botanic collections. Only two botanic garden col-

lections possess more than one haplotype: Fribourg and Barcelona (Fig. 1b) with gene

diversities (0.40 ± 0.24 and 0.33 ± 0.22, respectively) and nucleotide diversities

(0.0010 ± 0.0009 and 0.0008 ± 0.0007, respectively) falling within similar ranges. The

rarefaction analysis indicates that subsampling at random 31 individuals within the 67

in situ individuals would have led to a mean number of haplotypes of 19.1 instead of the 33

actually seen. This is much greater than the two haplotypes recorded for the 31 ex situ

individuals. Gene diversity was also found significantly lower ex situ than in situ

(h = 0.47 ± 0.05 and h = 0.92 ± 0.02, respectively).

a
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1

1 mutation step

 median vector
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Fig. 1 a Median-joining network for the combined Z. abelicea haplotypes. The size of each haplotype is
proportional to the number of individuals that share it. It considers the 31 ex situ individuals of this study
and 67 in situ individuals published in Christe et al. (2014). Ex situ individuals are represented in grey and
individuals sampled in natural populations in colours. b Haplotypes of Z. abelicea detected in the surveyed
ex situ collections (31 individuals from 9 botanic gardens). Haplotype names and abbreviations of the
botanic gardens are given in Table 1
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Zelkova carpinifolia

A total of 69 individuals from 21 botanic gardens were sequenced (Table 1; see online

Appendix; Fig. 2). Two individuals were identified as not being Z. carpinifolia because

they displayed haplotypes of the Asian Zelkova species (both from Jardin botanique de la

ville de Paris, Ecole de Breuil, PAREB, France). Moreover, five individuals were identified

as not belonging to the Zelkova genus (Fig. 2b): four from the Chicago Botanic Garden

USA (CHIC) and one from the Fribourg Botanical Garden Switzerland (FRIBG). Blast

analysis of the sequences in Genbank showed that the four trees from Chicago could be

Carpinus betulus or Ostrya (Betulaceae) and the one coming from Fribourg could be an

Ulmus species.

The remaining 62 individuals from 19 botanic garden collections displayed seven

haplotypes that were already known (BX, BZ, AZ, IT, JT, JS, HR; Christe et al. 2014;

Fig. 2a), three new haplotypes combinations (AX, JR and CT) and two new trnH–psbA

b

a

BX

BY
BZ

JT

JS

HR

IT

J3T

CP

AZ
AY

CK

17
1

1 mutation step

 median vector

EY EZEU

10NR

JR

J2S

AX

CT

26

Fig. 2 a Median-joining network for the combined Z. carpinifolia haplotypes. The size of each haplotype is
proportional to the number of individuals that share it. It considers the 62 ex situ individuals presented in
this study and 77 in situ individuals published in Christe et al. (2014). Ex situ individuals are represented in
grey and individuals sampled in natural populations in colours. b Haplotypes of Z. carpinifolia detected in
ex situ collections (69 individuals from 21 botanic gardens). Haplotype names and abbreviations of the
botanic gardens are given in Table 1
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sequences (J2 and N). These two sequences gave rise to two additional haplotypes, NR and

J2S, that are positioned close to known haplotypes in the network. Eight haplotypes (JS,

J2S, JR, JT, CT, IT, HR and NR) and 40 individuals were found in the part of the network

that contained clusters of individuals located in the eastern part of the distribution range of

Z. carpinifolia whereas four haplotypes (AX, AZ, BX, BZ) and 22 individuals could be

assigned to the western distribution range of Z. carpinifolia (Fig. 2a), according to Christe

et al. (2014). Eleven botanic gardens (63 %) have collections displaying at least two

different haplotypes, and seven of them (42 %) host individuals holding haplotypes that

come from the two major diversity areas of Z. carpinifolia.

The gene diversities ranged between 0.33 ± 0.22 (Botanical Garden Berlin Dahlem)

and 1.00 ± 0.50 (Mainz Botanical Garden, Germany; Royal Horticultural Society Wisley,

UK; Morris Arboretum, USA; Dawes Arboretum, USA). The nucleotide diversities dif-

fered more greatly, ranging from 0.0003 ± 0.0004 (Mainz Botanical Garden, Germany) to

0.0155 ± 0.0159 (Morris Arboretum, USA). Rarefaction analysis indicates that subsam-

pling at random 62 individuals within the 77 in situ individuals would have led to a mean

number of haplotypes of 14.7 instead of the 15 actually seen. This is higher than the 12

haplotypes found for the 62 ex situ individuals (Table 1). Accordingly, gene diversity was

found to be significantly higher in situ than ex situ (h = 0.93 ± 0.01 and 0.82 ± 0.03,

respectively; Table 1).

Discussion

For many threatened plant species, maintaining living ex situ collections offers a funda-

mental insurance policy for the future (Oldfield 2009). The Global Strategy for Plant

Conservation (GSPC), adopted at the Sixth Conference of the Parties to the Convention of

Biological Diversity in 2002 and revised in 2011, calls for 75 % of threatened plant species

to be conserved in accessible ex situ collections (CBD 2011). However, although the ex

situ cultivation of trees has very long tradition (Kozlowski et al. 2012a), the information

available on the genetic diversity and representativeness of botanic garden collections is

still very poor (Etisham-Ul-Haq et al. 2001; Namoff et al. 2010; Lauterbach et al. 2012).

Moreover, genetic comparisons between wild populations and ex situ collections of relic

trees are scarce (Del Tredici et al. 1992; Li et al. 2005; Namoff et al. 2010). As a

consequence, thorough genetic investigations of living ex situ collections of many

emblematic taxa, such as the genus Zelkova, are lacking.

Our study revealed substantial differences in the genetic diversity and origin of the ex

situ collections of the two investigated Zelkova species. The Transcaucasian species, Z.

carpinifolia, which is generally well represented in botanic garden collections (Kozlowski

et al. 2012a), has a relatively high genetic representativeness compared with the global

within-species genetic variability found in the natural stands analysed in our previous study

(Christe et al. 2014). The twelve haplotypes detected in ex situ collections are derived from

two genetically distant phylogeographic regions, with the majority of sampled trees (65 %)

having their origin in the eastern cluster (Iran, Azerbaijan and eastern Georgia) and only

35 % originating from the western cluster (Turkey and Georgian Colchis). For this species,

15 haplotypes were detected in the wild (Christe et al. 2014), seven of which were

recovered in ex situ collections. Moreover, ex situ collections allowed the identification of

five new haplotypes, leading to a total number of 20 haplotypes for the species. Although

the sampling of Christe et al. (2014) aimed to be exhaustive, the significant increase in
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haplotype number (?33 %) due to ex situ collections clearly highlights their interest in

preserving intraspecific diversity.

In contrast, the Cretan species Z. abelicea is clearly underrepresented in botanic garden

collections. Although this species possesses an extraordinarily high genetic variability

within and between natural populations, with 33 haplotypes detected by Christe et al.

(2014), only two were found in investigated ex situ collections. In this case, the ex situ

survey only increased the number of haplotypes by 3 % for the species. Moreover, one of

these haplotypes originated from a single region in the Omalos Plateau in the Lefka Ori

(White Mountains), which is the most visited and collected area on Crete (Søndergaard and

Egli 2006). The second haplotype, not recorded by Christe et al. (2014), can be assumed to

have originated from the Lefka Ori or from Thrypti given its position in the network at

equal distances from three haplotypes found in these two regions (VJ and XJ from Lefka

Ori and KJ from Thrypti). However, it is almost impossible that any ex situ culture is

coming from Thrypti. First, the population was discovered probably only in the 1980s and

was known by few specialists before the present investigations were started. Second, the

population is not producing seeds (only sterile browsed individuals). It is therefore very

improbable that plant material from this population has served in the past as a source of

any ex situ collection. The two former arguments therefore strongly suggest that the new

haplotype also originates for Lefka Ori. The remaining mountain chains (Kedros, Psiloritis,

Dhikti and probably Thrypti) with genetically distant Z. abelicea populations were most

likely never collected for the establishment of old ex situ collections.

Our study clearly demonstrates that the most threatened species, Z. abelicea, is not

safeguarded in the living ex situ collections investigated in this study. The ex situ con-

servation of this species therefore requires major planning and coordination efforts,

including the establishment of well-documented collections in botanic gardens in Greece

and especially on Crete. Ex situ cultures should be created using plant material collected

from all of the mountain regions where Z. abelicea still occurs. In particular, the popu-

lations from small, threatened and highly isolated regions of the Cretan Mountains

(Kedros, Psiloritisand Dhikti and Thrypti) need more attention. The Lefka Ori should also

be better sampled since populations from this region are only represented by two haplo-

types, whereas Christe et al. (2014) showed that it is the place where the highest diversity

can be found with 16 haplotypes. The practical conservation and propagation efforts

carried out by Egli (1995, 1997) and Søndergaard and Egli (2006) for Z. abelicea provide

relevant guidance. Plants collected in the wild were cultivated in several botanic gardens,

arboreta and private gardens on Crete, Switzerland, Norway and Denmark. A survey of

these collections, which were not included in our study, may change the picture and yield

valuable findings for future Z. abelicea conservation approaches. Recently, new conser-

vation efforts and field studies have been reactivated on Crete, Greece. The results of our

study will be included in local conservation action plans, in collaboration with relevant

scientific and conservation institutions on Crete, e.g. with the Mediterranean Agronomic

Institute in Chania (MAICh) and with the Forest Directorate of Chania (FDC).

Our study shows that the ex situ collections have overall significantly lower gene

diversities than those calculated for the in situ polymorphic populations, and lower

numbers of haplotypes than expected under random sampling of wild populations for both

species. This result is an indication that, for both species, the lower records for the ex situ

trees are not due to lower sampling, because these two measures are corrected for sampling

size, but rather to biased sampling. The bias is however higher for Z. abelicea than for Z.

carpinifolia. The way collections were established can account for this lower diversity as

they were partly built on seed, seedlings and cutting exchanges between botanical gardens.
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For example, the high representation of haplotypes JT, especially in botanical gardens

sampled in the UK, could be linked to the presence of this haplotype in natural populations

that are part of the botanical garden of Tbilisi in Georgia (Table 1; Christe et al. 2014).

This botanic garden was indeed proposing Z. carpinifolia seeds in his Index Seminum since

at least the late 19th century (Christe C., pers. comm.).

Furthermore, our study revealed that 8 % of ex situ trees collected for our survey had

been incorrectly identified and actually belong to other Ulmaceae genera (e.g., Ulmus) or

even to other families (Betulaceae). Four samples described as Z. carpinifolia were mis-

identified at the species level and actually belonged to eastern Asiatic members of the

genus.

This study highlights the need for re-evaluating the viability of living ex situ collections

of trees, especially relict trees, and the development of new strategies for future conser-

vation efforts by botanic gardens and arboreta. From our study we therefore draw the

following general conclusions and recommendations:

(1) For newly created ex situ collections, only well-documented plant material with

detailed information of its origin should be used, and for existing, often very old

collections, a thorough investigation of the provenance data for all relict trees under

cultivation should be undertaken. For Zelkova, the study of Christe et al. (2014)

showing that the western Eurasian species are highly structured was helpful and

could be used to assign a putative origin to trees without any available provenance

information. However, finding such a strong genetic structure associated to a high

diversity using chloroplast sequences is rare for tree species (Magri et al. 2007;

Rodrı́guez-Sánchez et al. 2009; Caetano and Naciri 2011), and the use of trnH–psbA

and trnL might not be as successful in other relict tree species.

(2) For relict genera with several species, conservation priority should be given to the

most threatened taxa and/or to narrow endemics. For the most threatened relict tree

species and/or genera, well-coordinated specialist groups should be created to act

globally to develop a long-term ex situ conservation strategy for these taxa. These

specialist groups should define, among other things, the geographical distribution of

ex situ collections and should ensure the genetic and biogeographical representa-

tiveness of the plant material used.

(3) Botanic gardens and arboreta in regions and countries with emblematic relict trees

should integrate the ex situ conservation of these taxa into their conservation

strategies and action plans.

(4) Further research concerning the minimum number of cultivated trees per botanic

garden and taxon to ensure the conservation of a maximum of the genetic diversity

for a given taxon should be carried out.

(5) For relict trees at the brink of extinction, maintaining living ex situ collections

should be accompanied by other ex situ conservation methods and approaches, e.g.,

cryopreservation of seeds, pollen, propagules, etc. frozen in liquid nitrogen; seed

banking with seeds stored under low moisture and temperature; or in vitro tissue

culture and propagation.
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