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           Conservation of relict plants that were able to survive through 
the Quaternary climatic oscillations and persist today in iso-
lated refugial areas is crucial for maintaining the global diver-
sity of plants, especially considering the current climate trend 
of increasing temperatures and water stress ( Petit et al., 2005 ; 
 Kozlowski et al., 2012 ). The Arcto-Tertiary relict fl ora, that 
covered large parts of the northern hemisphere during the Eo-
cene but since the Miocene has moved southward due to a shift 
toward a dryer and cooler climate ( Chaney, 1947 ;  Milne and 
Abbott, 2002 ;  Milne, 2006 ), is represented today by many tem-
perate tree genera, among which  Zelkova  gained a particular 

interest in the recent years ( Fineschi et al., 2002 ;  Denk and 
Grimm, 2005 ;  Kvavadze and Connor, 2005 ;  Søndergaard and 
Egli, 2006 ;  Garfi  et al., 2011 ;  Kozlowski et al., 2012 ;  Christe 
et al., 2014 ). The fossil record supports the past wide distribu-
tion of the genus ( Wang et al., 2001 ;  Denk and Grimm, 2005 ) 
and its extinction in North America, North Africa, and Europe 
as a result of climatic shifts in the Quaternary period ( Chaney, 
1947 ;  Kvavadze and Connor, 2005 ). The last appearances of 
 Zelkova  in mainland Europe were in Rome (Italy) and date back 
to 31 thousand years ago (ka) ( Follieri et al., 1986 ). 

  Zelkova carpinifolia  (Pall.) C. Koch. is the only species of 
the genus  Zelkova  that occurs in western Asia. The remaining 
 Zelkova  species are restricted to Mediterranean islands or have 
a wider distribution in East Asia. It has been shown that six re-
gions in western Asia could have served as climate refugia for 
forest vegetation during the Last Glacial Maximum (LGM): 
Colchis, western Anatolia, western Taurus, upper reaches of 
the Tigris River, Levant, and the southern Caspian basin 
( Tarkhnishvili et al., 2012 ). There are two relict forest regions 
in the Caucasus and adjacent areas: the Hyrcanian forest on the 
southern coast of the Caspian Sea, bounded by the Talysh and 
Alborz mountain ranges, and the Colchic forest on the eastern 
coast of the Black Sea, bounded by the western Greater and 
Lesser Caucasus mountains and the Likhi Ridge ( Nakhutsrishvili 
et al., 2011 ).  Zelkova carpinifolia  occurs naturally in the Hyrcan 
region of Azerbaijan and Iran and the Colchis of western 
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  •  Premise of the study:  The Caucasus represents one of the world’s biodiversity hotspots and includes the climatic refugia Hyr-
can on the southern coast of the Caspian Sea and Colchis on the eastern coast of the Black Sea, where different species survived 
during the Quaternary climatic oscillations. We evaluated the genetic diversity of the relict tree  Zelkova carpinifolia  shared 
between the two refugia and distributed throughout the Caucasus and adjacent areas. 

 •  Methods:  Specimens were collected from 30 geographical sites in Azerbaijan, Georgia, Iran, and Turkey and screened for vari-
ability at eight nuclear microsatellite loci. The genetic diversity among and within populations was assessed using a set of 
statistical measures. 

 •  Key results:  We detected 379 different genotypes from a total of 495 individuals with varying degrees of clonal reproduction 
at the different sites. Low to intermediate levels of genetic diversity were observed at all sites, and strong differentiation be-
tween sampling sites was absent. In addition, we observed no clear genetic differentiation between the Colchis and Hyrcan. 
Bayesian clustering of the genotypes revealed three populations with high levels of admixture between the sampling sites. 

 •  Conclusions:  The lack of strong genetic structure of studied populations of  Z. carpinifolia  contrasts with a previous study based 
on chloroplast markers and suggests that long-distance pollen dispersal is an important factor of gene fl ow among populations 
of  Z. carpinifolia . The present study does not reveal any particular site with particularly isolated genotypes that would deserve 
more attention for conservation purposes than others, although some sites should be considered for further investigation.  

  Key words:  Caucasus biodiversity hotspot; Colchis; gene fl ow; Hyrcan; relict tree; Ulmaceae;  Zelkova carpinifolia . 
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and cutting for fuel, agricultural developments, construction of 
roads, tourism developments, fi res, and extensive urbanization 
and industrialization ( Gulisashvili, 1961 ;  Scharnweber et al., 
2007 ;  Ramezani et al., 2008 ;  Akhani et al., 2010 ;  Kozlowski 
and Gratzfeld, 2013 ). As a consequence,  Z. carpinifolia  is listed 
as “Near threatened” ( Güner and Zielinski, 1998 ) according to 
the criteria of the International Union for Conservation of Na-
ture (IUCN). 

 The main aims of the current study were to (1) assess the 
nuclear genetic diversity across natural populations of  Z. carpi-
nifolia , (2) evaluate the differentiation between Hyrcanian and 
Colchic populations at nuclear loci, and (3) identify possible 
refugial areas as areas of high conservation value. 

 MATERIALS AND METHODS 

 Study species and sampling sites —     Zelkova carpinifolia  is a mesophytic 
deciduous tree species that occurs mainly in mixed lowland, riverside, and ra-
vine forests with trees such as  Quercus  sp.,  Carpinus  sp.,  Acer  sp.,  Ulmus  sp., 
 Parrotia persica ,  Fraxinus excelsior ,  Gleditsia caspia ,  Albizia julibrissin ,  Dio-
spyros lotus , and  Pterocarya fraxinifolia.  Some individuals grow to 40 m tall 
and 2–3 m in diameter and have an expected lifespan of more than 300 yr. At 
high elevations, up to 1500 m a.s.l., the species occurs in the form of small 
shrubs.  Zelkova carpinifolia  is andromonoecious with male fl owers clustering 
together at the basis of the current year’s twigs, while bisexual fl owers are sit-
ting alone in the leaf axils. Flowering takes place in March and April, and pol-
lination is by wind. The fruit is a greenish, angular, rugous drupe, that is usually 
dispersed with part of the twig by wind. 

 Between 2010 and 2012, leaf samples were collected from 495 individuals 
of  Z. carpinifolia  among 30 geographical sites (10–20 individuals per site): 
19 sites from Azerbaijan, 6 sites from Georgia, 4 sites from Iran, and 1 site from 
Turkey ( Fig. 1 ,  Appendix S1, see Supplemental Data with the online version of 
this article). Specimens were collected from both protected and unprotected 
areas, more or less untouched forests, forests degraded by human activities in 

Georgia, but also grows in the south Lesser Caucasus (Garabagh, 
Azerbaijan), eastern Georgia (Babaneuri Strict Nature Re-
serve), Zagros Mountains (Iran), and the eastern part of Turkey 
( Gulisashvili, 1961 ;  Davis, 1982 ;  Kvavadze and Connor, 2005 ; 
 Akhani et al., 2010 ). The upheaval of the Greater Caucasus and 
the Lesser Caucasus mountain ranges began, respectively, at 
the end of the Miocene-Pliocene era ( Avdeev and Niemi, 2011 ) 
and the Pliocene ( Sosson et al., 2010 ), whereas Colchic and 
Hyrcanian forests are believed to have emerged during the Up-
per Pliocene ( Kolakovsky, 1961 ). These forests are now com-
pletely separated from each other and consist of distinctive 
plant communities, with several common relict plant species 
( Nakhutsrishvili et al., 2011 ). Climatic oscillations during the 
Holocene infl uenced the distribution of  Z. carpinifolia  as it was 
shown for Georgia ( Kvavadze and Connor, 2005 ) and Iran 
( Djamali et al., 2008 ;  Ramezani et al., 2008 ). 

 The phylogenetic relationships in the genus  Zelkova  were 
studied by  Denk and Grimm (2005)  using morphological char-
acters and ribosomal internal transcribed spacer (ITS).  Fineschi 
et al. (2002)  addressed the genetic variation in natural popula-
tions of two Mediterranean species ( Z. sicula  and  Z. abelicea ) 
and their comparison to  Z. carpinifolia  using different molecular 
techniques, but no variation within the Mediterranean species 
was found.  Christe et al. (2014)  addressed the phylogeographi-
cal patterns in three western Eurasian species:  Z. sicula ,  Z. abe-
licea , and  Z. carpinifolia  using two chloroplast ( trnH-psbA  and 
 trnL ) and nuclear (ITS1 and ITS2) regions and detected high 
levels of genetic variation and strong phylogeographical struc-
ture using chloroplast markers. 

 Currently,  Z. carpinifolia  mainly occurs in lowlands and 
middle mountain ranges, where, more recently, tree popula-
tions have become fragmented due to anthropogenic activities 
such as selective logging for timber, silvopasture, tree lopping 

 Fig. 1. Geographical distribution of  Zelkova carpinifolia  in the Caucasus and Iran. Gray circles represent the distribution according to  Browicz and 
Zielinski (1982) ; black circles represent sites sampled in this study. Red dotted lines enclose Caucasus ecoregion as designated by the World Wildlife Fund 
(WWF). Map was created in ArcGIS Desktop version 10.2.2 ( ESRI, 2014 ). Country borders, streams, water bodies and terrain shapefi les were taken from 
ArcGIS Online ( ESRI, 2014 ).   
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the past and naturally regenerating forests, and park-like forest stands and rem-
nant tree stands in villages. The distances among sites varied from 1 to 1000 km. 
The minimum distance between sampled trees was approximately 10 m, except 
for small sites where minimum distance was lower, but sampling of neighbor-
ing trees was prevented. Per site, one voucher specimen was collected, and 
voucher specimens were deposited in the herbaria of the Botanical Garden and 
Botanical Museum Berlin-Dahlem (Germany) and the Natural History Museum 
in Fribourg (Switzerland). Collection numbers were not assigned for specimens 
from Iran, Georgia, and Turkey, and herbarium vouchers were not collected for 
sites ZE053_IR and ZE069_AZ. Collected leaves were dried and stored in sil-
ica gel until DNA extraction. 

 DNA extraction and microsatellite genotyping —    Total genomic DNA was 
extracted from silica-gel-dried leaves using the NucleoSpin Plant II kit (Macherey 
Nagel, Düren, Germany) following the manufacturer’s protocol and indi-
viduals were initially genotyped at 10 microsatellite loci described previously 
for  Z. carpinifolia  ( Maharramova et al., 2014 ). Except for loci ZMS_4 and 
ZMS_9, microsatellite markers were amplifi ed by multiplex polymerase chain 
reaction (PCR) using three mixes of oligonucleotide primers: mix 1 amplifi ed 
microsatellite loci ZMS_12 and ZMS_13; mix 2 amplifi ed loci ZMS_1, 
ZMS_2, ZMS_5 and ZMS_7; and mix 3 amplifi ed loci ZMS_3 and ZMS_8. 
PCRs were performed in 25-µL reaction volumes containing 20–40 ng template 
DNA, 0.4 µM of each forward and reverse primer (Eurofi ns MWG Operon, 
Ebersberg, Germany), 1 ×  TaqBuffer S (PeqLab, Erlangen, Germany), 1.5 mM 
MgCl 2 , 250 µM of each dNTP, 0.2 mg/µL bovine serum albumin (BSA), and 
0.75 U HotTaq polymerase (PeqLab). Either the forward or reverse primer of 
each primer combination was labeled with a fl uorescent dye (6FAM, VIC, NED 
or PET; Applied Biosystems, Warrington, UK; Appendix S2, see online Sup-
plemental Data). The PCRs were carried out using the following temperature 
profi le: initial denaturation at 96 ° C for 2 min, annealing at 57 ° C (mix 1), 60 ° C 
(mixes 2 and 3), 62 ° C (for ZMS_9) or 52 ° C (for ZMS_4) for 1 min, and primer 
extension at 72 ° C for 1 min; 30 cycles of denaturation at 95 ° C for 30 s, anneal-
ing at the aforementioned temperatures for 30 s, and primer extension at 72 ° C 
for 30 s; fi nal extension at 72 ° C for 15 min. Proper PCR amplifi cation was 
checked by agarose gel electrophoresis and PCR products were cleaned up us-
ing the Gel/PCR DNA Fragment Extraction Kit (Avegene Life Sciences, 
Taipeh, Taiwan). Fragment analysis was performed by Macrogen (Seoul, Ko-
rea) using GeneScan 500 LIZ as internal size standard. 

 Statistical analysis —    Genotypes were scored using GeneMarker version 
1.95 (SoftGenetics, State College, Pennsylvania, USA) and manually adjusted 
where necessary. Because  Z. carpinifolia  is actively reproducing by sprout-
ing, identity analysis as implemented in the program CERVUS version 3.0.3 
( Kalinowski et al., 2007 ) was performed to identify clones. Multilocus geno-
type diversity was estimated as a modifi cation of the Simpson index ( Pielou, 1969 ; 
 Berg and Hamrick, 1994 ):  D  G  = 1 −  Σ  n i  ( n i   − 1)/ N ( N  − 1), where  n i   is the number 
of individuals of genotype  i  and  N  is the total number of individuals. The clone 
size was calculated as the ratio  N  r  /N  g  and the frequency of clones per site as 
1 –  N  g  /N  r , where  N  r  is the total number of individuals sampled per site (ramets) 
and  N  g  is the number of different genotypes per site (genets) ( McClintock and 
Waterway, 1993 ;  Chung and Epperson, 2000 ). Genetic diversity parameters are 
usually measured with an exclusion of clonal individuals ( Setsuko et al., 2004 ; 
 Wei et al., 2013 ). However, it was shown that clonal individuals do not affect 
the levels of genetic diversity signifi cantly ( Chung et al., 2005 ), but rather affect 
the spatial genetic structure of populations ( Berg and Hamrick, 1994 ;  Setsuko 
et al., 2004 ;  Chung et al., 2005 ;  Schueler et al., 2006 ). Except for the analysis 
of null alleles, all further analyses were performed using both the data set with 
all ramets and the data set with genets only to assess whether the measured pa-
rameters are affected by the inclusion of clonal individuals. 

 Failed PCR amplifi cations that could be caused by the presence of null al-
leles or other technical issues were treated as missing data, and the percentage 
of missing data were calculated manually. However, null alleles can also occur 
at heterozygous loci and cause a homozygote excess. The program Micro-
Checker version 2.2.3 ( Van Oosterhout et al., 2004 ) was used to identify null 
alleles and to calculate null allele frequencies for all loci. 

 Genetic diversity was estimated in the program Arlequin version 3.5 ( Excoffi er 
and Lischer, 2010 ) as allelic richness ( A ), observed heterozygosity ( H  O ) and 
expected heterozygosity ( H  E ) under the assumption of Hardy–Weinberg (HW) 
genotypic proportions. Polymorphism information content (PIC), commonly used 
in linkage analysis as a measure of polymorphism for a marker locus ( Botstein 
et al., 1980 ), was calculated in CERVUS. The occurrence of alleles private 
to a single site was assessed. To correct for differences in sample size be-
tween the geographical sites, we calculated allelic richness and private 

allelic richness using rarefi ed subsamples of 10 individuals (excluding 
ZE061_TUR with only 8 individuals) with HP-rare version 1.1 ( Kalinowski, 
2005 ). 

 Arlequin was used to assess deviations from HW equilibrium using a locus-
by-locus exact test (1 000 000 Markov chain steps and 100 000 dememorization 
steps), to calculate Wright’s fi xation index  F  IS  ( Weir and Cockerham, 1984 ) 
and to assess pairwise linkage disequilibrium (LD) between loci using a likeli-
hood ratio test with 10 000 permutations to calculate the signifi cance of the 
observed likelihood ratios. 

 An exact test of population differentiation based on genotype frequencies 
was performed with Arlequin using 100 000 Markov chain steps and 10 000 
dememorization steps. For visualizing the genetic structure of sampled sites, 
multidimensional scaling was performed using the cmdscale routine in the pro-
gram R version 3.0.2 ( R Core Team, 2013 ) with a matrix of pairwise  R  ST  dis-
tances between geographic sites calculated in Arlequin. 

 Population genetic structure was investigated using the program  STRUCTURE  
version 2.3.4 ( Pritchard et al., 2000 ) with a model that allows mixed ancestry of 
individuals and assumes correlated allele frequencies within populations. Five 
independent runs were performed with the number of clusters ( K ) varying from 
2 to 25, a burn-in period of 100 000 iterations and a data collection period of 
1 000 000 iterations. Bayesian clustering is based on the assignment of individu-
als to  K  clusters (populations) by estimating the membership coeffi cients for 
each individual in each cluster and indicating the maximal number of clusters 
using the posterior probability of the data for a given  K  [Ln  P ( D )]. However, 
 Evanno et al. (2005)  showed that the maximum value of Ln  P ( D ) does not al-
ways indicate the “true” number of clusters, and instead Δ K , the rate of change 
in the log probability of data between successive  K  values, should be used. The 
program STRUCTURE HARVESTER web version 0.6.93 ( Earl and vonHoldt, 
2012 ) was used to analyze the clustering results, to calculate  ΔK  and to produce 
input fi les for the program Clumpp version 1.1.2 ( Jakobsson and Rosenberg, 
2007 ), which permutes the results of different clustering runs and produces a 
single table with individual membership coeffi cients. The results were visual-
ized using the program Distruct version 1.1 ( Rosenberg, 2004 ). 

 For partitioning the total genetic variation among groups, among sites 
within groups, and within sampling sites, analysis of molecular variance 
(AMOVA) across all loci was performed in Arlequin using pairwise genetic 
distances defi ned as  R  ST  and 10 000 permutations to assess the signifi cance of 
the variance components. For this purpose, the sampling sites were initially 
grouped together based on their geographical distribution into a Colchic group 
with samples from West Georgia, Turkey, and East Georgia (ZE054_GEO is 
situated outside the Colchis, but placed here due to its close proximity) and 
a Hyrcanian group with the samples from Azerbaijan and Iran. A second 
AMOVA was performed using only non-admixed populations as suggested 
by the  STRUCTURE  results. Pairwise genetic distances between sampling sites, 
estimated as  R  ST  ( Slatkin, 1995 ) and  F  ST  ( Wright, 1949 ), were obtained in Ar-
lequin, and signifi cances were assessed using a permutation test with 10 000 
permutations. The adjustment of  P  values for multiple comparisons were im-
plemented in R ( R Core Team, 2013 ) using the method controlling the false 
discovery rate (FDR;  Benjamini and Hochberg, 1995 ). Correlation between  R  ST  
and  F  ST  was assessed in R ( R Core Team, 2013 ) using a Mantel test ( Mantel, 
1967 ) implemented in the “vegan” package ( Legendre and Legendre, 1998 ). To 
evaluate the relationship between genetic and geographic distances, we per-
formed a Mantel test in Arlequin (signifi cance was assessed using 100 000 per-
mutations) using pairwise  R  ST  as genetic distances and pairwise geographic 
distances obtained using the Geographic Distance Matrix Generator 1.2.3 
( Ersts, 2012 ). 

 RESULTS 

 Genetic diversity in Zelkova carpinifolia —    Identical multi-
locus genotypes were found in 28 sampling sites and the multi-
locus genotypic diversity ( D  G ) ranged between 0 (all multilocus 
genotypes identical) for ZE061_TUR and 1 (no identical multi-
locus genotypes) for ZE072_AZ and ZE054_GEO (average 
value of  D  G  = 0.922;  Table 1 ).  Excluding ZE061_TUR, the 
lowest value of  D  G  (0.767) and the largest clone size (3.2) 
were observed for site ZE031_AZ. The individuals (ramets) 
with identical multilocus genotypes were considered to be-
long to the same genet. From the 495 ramets that were 
screened, 379 genets were detected. The frequency of clones 
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different sites. Therefore, we assumed no physical linkage be-
tween loci. As shown in  Table 1 , the inclusion of clonal indi-
viduals did not change the estimates of genetic diversity much, 
although it did affect locus by locus signifi cance of HWE and 
LD (data not shown). 

 Genetic structure of Zelkova carpinifolia populations —    
Among 435 tests for pairwise differentiation among 30 geographi-
cal sites with clonal individuals, only 73 were non-signifi cant ( P  > 
0.05). However, all pairwise population (site) comparisons 
were non-signifi cant when clonal individuals were excluded 
from the analysis. No signifi cant difference was found between 
matrices of  F  ST  and  R  ST  (Mantel test, 1000 permutations,  r  = 
0.519,  P  < 0.05) showing the independence of our results from 
the applied microsatellite mutation model. Among a total of 
435  R  ST  pairwise comparisons, 146 were not signifi cantly dif-
ferent from zero when clonal individuals were included in the 
analysis, and 251 were not signifi cantly different from zero 
when clones were excluded (online Appendix S3). Including 
clonal individuals, the lowest signifi cant pairwise  R  ST  was be-
tween ZE001_AZ and ZE043_AZ (0.027,  P  < 0.05), and the 
highest was between ZE027_AZ and ZE053_IR (0.410,  P  < 
0.05). When clones were excluded, the lowest pairwise  R  ST  was 
observed between ZE043_AZ and ZE067_AZ (0.054,  P  < 
0.05), and the highest was between ZE027_AZ and ZE053_IR 
(0.489,  P  < 0.05). In general, ZE027_AZ and ZE053_IR were 
not only more distant from each other, but also from all other 
sampled sites. It can also be seen in  Fig. 2 ,  which presents the 
results of a multidimensional scaling. When clones were re-
moved, the  R  ST  distances for ZE067_AZ, ZE062_AZ and 
ZE079_IR were not signifi cantly different from zero (Appendix 
S4). Additionally, Mantel test revealed no signifi cant correla-
tion between genetic and geographic distances in both datasets 
( r  = 0.093,  P  > 0.05). 

 Hierarchical AMOVA revealed low differentiation between 
the Colchic and Hyrcanian groups and among the sampled sites 
within the groups (respectively, 0.71% and 10.55%), with a 
non-signifi cant fi xation index for among group variation. The 
differences among individuals within sampling sites exhib-
ited the major part of the total variation (88.74%;  Table 3 ).  
Exclusion of the clonal individuals changed the results only 
slightly, preserving the same tendency for higher within-site 
differentiation. 

 Analysis of the results of the Bayesian clustering as imple-
mented in  STRUCTURE  revealed that the posterior probability of 
the data for a given  K  [Ln P( D )] increases with an increasing 
number of clusters ( K ) and that it reaches a maximum for  K  = 5. 

varied from 0 (ZE072_AZ and ZE054_GEO) over 0.688 
(ZE031_AZ) to 0.875 (ZE061_TUR). 

 Disregarding clonal individuals, the highest estimated null 
allele frequencies (NAF) were detected for loci ZMS_5 (0.037), 
ZMS_7 (0.054), ZMS_4 (0.184), and ZMS_9 (0.235). Loci 
ZMS_4 and ZMS_9 were not amplifi ed in, respectively, 1.6% 
and 15% of the individuals, whereas ZMS_5 and ZMS_7 were 
amplifi ed in almost all individuals. Locus ZMS_2, which 
showed 5% of missing data, did not show any evidence for the 
presence of null alleles, indicating that missing data are not 
caused by the presence of null alleles alone. General homozy-
gote excess caused by the presence of null alleles was observed 
in nine sites at locus ZMS_9 and in 13 sites at locus ZMS_4. 
Loci ZMS_4 and ZMS_9 were excluded from all subsequent 
analyses. 

 In total, 51 alleles were observed for eight microsatellite loci. 
The number of alleles per locus ( A ) ranged from three alleles at 
locus ZMS_3 to 10 alleles at loci ZMS_2 and ZMS_8 (overall 
mean = 6.38 alleles). The total number of di- and trinucleotide 
repeats ( R ) ranged between 2 and 11 repeats per locus with an 
average of 6.25 repeats across all loci. The highest gene diver-
sity ( H  E ) and/or polymorphism information content (PIC) were 
observed for loci ZMS_2 (respectively, 0.693 and 0.726) and 
ZMS_8 (respectively, 0.677 and 0.731), and the lowest for lo-
cus ZMS_5 (respectively, 0.114 and 0.123). Average gene di-
versity across all loci was 0.460 (see  Table 2 ).  

 Genetic diversity parameters per sampling site are shown in 
 Table 1 . The average number of alleles across loci per site ( A ) 
ranged between 1.25 (ZE061_TUR) and 4.13 (ZE021_AZ), and 
the rarefi ed allelic richness ( A  R ) per site (calculated excluding 
ZE061_TUR) between 2.35 (ZE031_AZ) and 3.63 (ZE051_
AZ). Average private allelic richness was also low (0.01–0.14), 
and private alleles were detected in 11 sampled sites (for up to 
three loci). The mean observed heterozygosity ( H  O ) per site 
varied between 0.410 (ZE076_IR) and 0.750 (ZE007_AZ), 
whereas the mean expected heterozygosity ( H  E ) varied between 
0.425 (ZE054_GEO) and 0.604 (ZE072_AZ). ZE061_TUR 
was not considered due to its clonal structure. Twelve sampling 
sites signifi cantly deviated from HWE for one to three loci. The 
mean fi xation index  F  IS  over all sites was slightly negative 
(−0.092), with  F  IS  ranging between −0.455 (ZE001_AZ) and 
0.198 (ZE079_IR), but deviations of  F  IS  from zero were not 
signifi cant ( P  > 0.05). Among a total of 840 tests for pairwise 
linkage disequilibrium among the eight loci, only 55 were sig-
nifi cant ( P  < 0.05). Signifi cant linkage disequilibria were de-
tected in 21 sites for at least one locus pair, with two pairs of 
loci (ZMS_2 and ZMS_8; ZMS_2 and ZMS_7) linked in fi ve 

  TABLE  2. Characteristics of eight microsatellite loci for  Zelkova carpinifolia . 

Locus  A  (total)  A  (mean  ±  SD)  R  (total)  R  (mean  ±  SD)  H  E  (total)  H E   (mean  ±  SD) PIC

ZMS_1 7 4.03  ±  1.098 7 5.03  ±  1.450 0.684 0.606  ±  0.151 0.634
ZMS_2 10 5.50  ±  1.526 11 7.10  ±  2.578 0.752 0.693  ±  0.104 0.726
ZMS_3 3 2.07  ±  0.365 2 1.07  ±  0.365 0.477 0.425  ±  0.118 0.366
ZMS_5 5 1.53  ±  0.629 4 0.60  ±  0.770 0.127 0.114  ±  0.156 0.123
ZMS_7 6 3.77  ±  0.971 5 3.57  ±  0.971 0.660 0.568  ±  0.159 0.621
ZMS_8 10 5.03  ±  1.189 10 6.43  ±  0.935 0.765 0.677  ±  0.095 0.731
ZMS_12 4 2.60  ±  0.724 3 2.23  ±  0.935 0.258 0.247  ±  0.161 0.247
ZMS_13 6 2.70  ±  0.794 8 2.27  ±  1.617 0.397 0.352  ±  0.154 0.355
mean 6.38 3.40  ±  0.539 6.25 3.87  ±  0.596 0.515 0.460  ±  0.080 0.475

  Notes:   A  = number of alleles,  R  = allelic range (difference between minimum and maximum number of repeats),  H  E  = expected heterozygosity, PIC = 
mean polymorphism information content. 
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differentiation were shown for  Juglans regia  ( Ibrahimov et al., 
2010 ;  Karimi et al., 2010 ), albeit that population sampling in 
both studies was biased toward low-distance scales. Usually 
long-lived woody species are likely to possess higher levels of 
genetic diversity than other life forms as they possess a higher 
proportion of polymorphic loci and more alleles per locus 
within their populations ( Hamrick et al., 1992 ). However, simi-
lar levels of genetic diversity at neutral loci ( H  E  = 0.48,  A  = 3.4) 
were described for  Ulmus leavis , a close relative of  Zelkova,  
from glacial refugia of the Iberian Peninsula (Spain) ( Venturas 
et al., 2013 ). 

 Vegetative reproduction could delay the time among genera-
tions in disturbed environments and, therefore, buffer against 
the effect of fragmentation on the genetic diversity ( Wei and 
Jiang, 2012 ). Root sprouting and stump shooting are also char-
acteristic for  Zelkova  species ( Gulisashvili, 1961 ;  Nakagawa 
et al., 1998 ;  Søndergaard and Egli, 2006 ), and almost all stud-
ied sites of  Z. carpinifolia  contained clonal individuals with the 
large clone size for ZE031_AZ severely affected by past log-
ging and lopping. The site ZE061_TUR from Trabzon (Turkey) 
described previously as  Z. carpinifolia  subsp.  yomraensis  
( Anșin and Gercek, 1991 ) seems to be established by only one 
individual, since all eight individuals represent the same multi-
locus genotype. 

 Gene fl ow between Hyrcanian and Colchic populations as 
a result of wind pollination —    The current distribution of com-
mon shared relicts of Colchic and Hyrcanian forests such as 
 Zelkova carpinifolia  and  Pterocarya fraxinifolia  outside the cli-
matic refugia could be a result of expansion processes during 
interglacials. However, the occurrence of their fossils in differ-
ent parts of Georgia since the Miocene ( Stuchlik and Kvavadze, 
1998 ;  Kvavadze and Connor, 2005 ) suggests that they also cov-
ered the region before the uplift of topographical barriers and 
formation of Colchic and Hyrcanian forests in the Upper Plio-
cene ( Kolakovsky, 1961 ). Climatic oscillations during the Ho-
locene and recent anthropogenic disturbance infl uenced the 
current distribution of  Z. carpinifolia  in the Caucasus. Isolation 
as well as human-induced fragmentation is expected to cause a 
reduction of the gene fl ow among populations and an increase 
of inbreeding and random genetic drift in populations, resulting 
in strong genetic structure among regions and isolated popula-
tions ( Young et al., 1996 ;  Lowe et al., 2005 ). Such effects could 
also occur in  Zelkova  populations in the Caucasus. However, 
the obtained results indicate the same levels of genetic diver-
sity, absence of inbreeding, and low differentiation between the 
two regions, with some private alleles detected for Hyrcan. 
Many temperate tree species are characterized by high diversity 
within populations and low differentiation among populations 
( Hamrick and Godt, 1996 ;  Young et al., 1996 ;  Sun et al., 2011 ; 
 Lesser et al., 2013 ;  Wei et al., 2013 ) due to the long lifespan, 
woody life form, outcrossing mating system, and wind pollina-
tion ( Loveless and Hamrick, 1984 ;  Heuertz et al., 2004 ). Wind 

However, the optimal number of clusters suggested by the Δ K  
method corresponded to  K  = 3 ( Fig. 3 ).  A visual representation 
of individuals’ membership coeffi cients also shows that three 
clusters capture the major structure in the data ( Fig. 4 ).  The 
 STRUCTURE  analysis separated Colchic (blue cluster) and Hyr-
canian (yellow cluster) groups with the third cluster (pink) 
inside the Hyrcanian group. Nevertheless, many sites are ad-
mixed with individuals sharing their memberships in two or all 
three clusters. The second AMOVA, using only non-admixed 
populations as suggested by the  STRUCTURE  results, showed 
25.9% differentiation among sites ZE001_AZ, ZE027_AZ, 
and ZE058_GEO. 

 DISCUSSION 

 Genetic diversity at nuclear microsatellite loci and fre-
quency of clonal reproduction —    The present study reports 
low to intermediate levels of genetic diversity in 30 sites sam-
pled throughout the range of the relict tree  Zelkova carpinifolia  
based on eight nuclear microsatellite loci. The lack of similar 
comprehensive studies of other trees from the Caucasus region 
prevents the recognition of general patterns of genetic diversity 
in its relict forests. Higher values of genetic diversity parame-
ters ( H  E  = 0.6–0.7,  A  = 4–4.6) and high among population 

  TABLE  3. Results of hierarchical AMOVA for relict tree  Zelkova carpinifolia . 

Source of variation df Sum of squares Variance components Percentage of variation, % Fixation indices

Among groups 1 111.424 0.11488 0.71  F  CT  = 0.00708
Among sites within groups 28 1979.74 1.71169 10.55  F  SC  = 0.10625*
Within sites 960 13822.982 14.39894 88.74  F  ST  = 0.11257*
Total 989 15914.145 16.2255

  Notes:  * P  < 0.05. 

 Fig. 2. Multidimensional scaling of 30 sites of  Zelkova carpinifolia  
using pairwise  R  ST  as genetic distance (including clonal individuals). Cir-
cles represent sampling sites. Numbers correspond to the sites as shown in 
 Table 1 .   



MAHARRAMOVA ET AL.—GENETIC DIVERSITY OF  ZELKOVA CARPINIFOLIA 125January 2015]

 Fig. 3. Bayesian inference of the number of clusters ( K ) over fi ve replicates for each  K , using software  STRUCTURE , based on 495 individuals of  Zelkova 
carpinifolia  collected from 30 geographical sites in the Caucasus .  (A) Mean posterior probability of data for a given  K  [Ln P( D )]. (B) Rate of change in the 
log probability of data between successive  K  values (Δ K ).   

 Fig. 4. Results of Bayesian clustering of 495 specimens of relict tree  Zelkova carpinifolia  for  K  = 2–5, where the most probable number of clusters is 
 K  = 3 with blue cluster representing Colchic group of populations and yellow and pink clusters representing the Hyrcanian group.   

pollination allows gene fl ow among populations that could 
override inbreeding and genetic drift and cause low among 
population differentiation and elimination of geographical 
structure ( Lesser et al., 2013 ). 

 However, we found about 26% of variation among three 
non-admixed populations each representing one of the three 
clusters revealed by  STRUCTURE  analysis: ZE001_AZ of shrubs 
found at a high altitude (1205 m a.s.l.) near Zuvand highland 
(Lerik, Azerbaijan); ZE027_AZ, a small but dense tree stand 
surrounding the cemetery in Tengerud (Astara, Azerbaijan); 
and ZE058_GEO, a very small tree stand in the village of Rok-
iti (Baghdati, West Georgia) close to the Ajameti Nature Re-
serve. The observed admixture of the rest of the sampling sites 
could also be explained by pollen-mediated gene fl ow among 
populations within and between Colchis and Hyrcan. Even if 
 Z. carpinifolia  is a long-lived woody species and our sampling 
included overlapping generations of trees that could lead to an 
underestimation of the effects of the recent human-induced 
fragmentation as shown for black walnut ( Victory et al., 2006 ), 
fragmentation caused by climatic changes and long-lasting iso-
lation of the two regions would have been obvious from the 
detected patterns of genetic differentiation. Pollen of  Z. carpi-
nifolia  was shown to be scarcely represented in sediments of 
Georgia ( Stuchlik and Kvavadze, 1993 ), which was explained 
by the low yield of pollen production or poor pollen preser-
vation in sediments. The limited pollen content (5–10%) was 
also described from fossil spectra of the Middle Miocene and 
Pliocene-Pleistocene from Georgia ( Stuchlik and Kvavadze, 1993 ). 

Long-distance dispersal of pollen of  Z. carpinifolia  up to 100 km 
was shown by  Kvavadze and Connor (2005) . However, our 
fi ndings indicate the possibility for pollen dispersal over larger 
distances (200 km or more). So far, no other cases of such long-
distance pollen dispersal were described in the literature ( Petit 
and Hampe, 2006 ;  Heslewood et al., 2014 ). However, we do 
not exclude that more stepping-stone populations of  Zelkova 
carpinifolia , which connected the regions in the past have al-
ready been eliminated due to climate change or anthropogenic 
infl uence, and so our results can also illuminate the past gene 
fl ow in a long-lived tree. 

 Incongruent patterns of diversifi cation at nuclear and 
chloroplast loci —    High haplotype diversity was detected in 
natural populations of  Z. carpinifolia  using chloroplast markers 
in the recent study of  Christe et al. (2014) . Fifteen haplotypes 
clustered in two groups, separating western Colchic from east-
ern Hyrcanian populations. The groups were separated by 19 
mutations, and among population differentiation was signifi -
cant, and constituted about 87% of the total variation. A dis-
crepancy between chloroplast and nuclear markers was shown 
previously for other tree species ( Pakkad et al., 2008 ;  Sun et al., 
2011 ) and likely corresponds to a difference in seed and pollen 
dispersal. Chloroplast markers tracking uniparental inheritance 
revealed signifi cant genetic structuring and differentiation among 
populations, providing evidence for limited seed dispersal in 
this species. Fruiting twigs separating from the mother trees 
can only disperse over very short distances in  Zelkova  species 



126 AMERICAN JOURNAL OF BOTANY [Vol. 102

of long-distance gene fl ow by pollen and the effect of out-
breeding depression in  Zelkova  to understand how conserva-
tion management should be planned. 
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( Hoshino, 1990 ). However, both pollen and seed production 
was shown to be irregular in  Zelkova  ( Nakagawa et al., 1998 ; 
 Søndergaard and Egli, 2006 ;  Garfi  et al., 2011 ). The intensity of 
fruiting in  Z. carpinifolia  differs from year to year and among 
individuals, and 30–80% of fruits are empty due to unfavorable 
environmental conditions during fl owering ( Gulisashvili, 
1961 ). Nuclear markers are biparentally inherited and track 
both pollen and seed dispersal. The analysis of ITS variability 
in populations of  Z. carpinifolia  ( Christe et al., 2014 ) did not 
reveal a clear differentiation between Hyrcan and Colchis re-
gions, which could also be interpreted in the light of pollen-
mediated gene fl ow due to wind pollination. Moreover, the 
greater proportion of pollen fl ow over the seed fl ow was indi-
cated in other studies of temperate and tropical tree species 
( Ennos, 1994 ;  Petit and Hampe, 2006 ). 

 Since our results obtained at neutral loci differed from chlo-
roplast data, it should also be taken into account that microsat-
ellites are prone to size homoplasy ( Estoup et al., 2002 ) and that 
evaluation of the genetic diversity could depend on their loca-
tion in the genome (genic vs. nongenic) ( DeFaveri et al., 2013 ), 
so they would not refl ect genome-wide diversity ( Vali et al., 
2008 ). 

 Implications for conservation —    Despite of in situ protec-
tion of  Z. carpinifolia  in Nature Reserves, National Parks and 
Protected areas in Georgia, Iran, and Azerbaijan, the species is 
still under the threat of human infl uence and ongoing climate 
change. It was also shown that very limited ex situ collections 
of this relict species are found in the countries of its origin 
( Kozlowski et al., 2012 ). So, ex situ and in situ conservation 
planning is still a challenge. Furthermore, abandoned former 
plantations and clear-cuttings in Talysh lowlands (Azerbaijan) 
could be used for reforestation purposes ( Scharnweber et al., 
2007 ). 

 In the planning of conservation strategies, both plastid and 
nuclear data should be used ( Moritz, 1994 ), and priority 
should be given to the measure of allelic richness compared 
with allelic frequencies ( Petit et al., 1998 ). Our fi ndings based 
on nuclear multilocus genotypic data show low values of al-
lelic richness in all studied geographical sites. We identifi ed 
some populations with non-admixed ancestry based on the 
distribution of allele frequencies, all of them residing outside 
the protected areas. None of these populations contained any 
private alleles or were characterized by higher genetic diver-
sity. Although some other sites exhibit low frequencies of pri-
vate alleles, no individual site could be indicated as more 
valuable for conservation. However, they could be the areas 
close to the source (refugium) populations and could be con-
sidered for future investigations. The results suggest that spa-
tially isolated populations are not isolated genetically as a 
result of gene fl ow, which prevents inbreeding in and differ-
entiation among the populations; however, high gene fl ow 
could be hazardous in terms of outbreeding depression when 
fi tness of the progeny is reduced ( Ellstrand, 1992 ). The reduc-
tions in a seed set, production of empty seeds, and irregular 
fl owering in  Zelkova  are usually attributed to unfavorable en-
vironmental conditions, but they could be argued to represent 
the consequences of outbreeding depression as a result of in-
traspecifi c gene fl ow. In conservation genetics, if populations 
experience outbreeding depression, then management should 
be directed to reduce the gene fl ow ( Ellstrand, 1992 ). How-
ever, more investigations are required to support the evidence 
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