

Inhaltsverzeichnis

1	Gegenstand	3
2	Abwasserreinigungsmethode und – prinzip der untersuchten ARA	4
2.1	Entnahmeprinzip	4
2.2	Prinzip der Abwasserreinigung	5
3	Gesetzliche Anforderungen	6
3.1	Beurteilung der Qualität des Auslaufs	6
3.2	Beurteilung der Qualität des Fliessgewässers oberhalb und unterhalb des Auslaufs	8
4	Ergebnisse	11
4.1	Phosphor	11
4.2	Stickstoff	11
5	Perspektiven	12

6	Anhänge	13
A1	Karte des Messnetzes der Auswirkungen der ARA	14
A2	Übersichtstabelle aller Ergebnisse	16
А3	Übersichtstabelle mit Klassifikation gemäss MSK	20
A4	Zusammenfassung nach ARA	22
A5	Überblick der Auswirkung der Ausläufe auf die Fliessgewässer	65

1 Gegenstand

Im Jahr 2009 wurde eine Probenahmekampagne oberhalb, unterhalb und am Auslauf der Abwasserreinigungsanlagen (ARA) des Kantons Freiburg durchgeführt, um festzustellen, wie sich Letztere auf die Qualität der Fliessgewässer auswirken.

Daher waren die ARA, die ihr Abwasser direkt in einen See oder in seiner Nähe einleiten (Morat, Corpataux, Vuippens, Charmey, Sommentier, Châtonnaye, Estavayer-le-Lac et Delley), nicht Gegenstand der Untersuchung.

Untersuchte Ausläufe:

ARA	Fliessgewässer	ARA	Fliessgewässer
AUTIGNY	Glâne	MARLY	Saane
BROC	Saane	MISERY	Le Chandon
BUSSY	Petite-Glâne	MONTAGNY	L'Arbogne
CORSEREY	Bach Lentigny	PENSIER	La Sonnaz
COTTENS	Bach Cottens	POSIEUX	Saane
DOMDIDIER	Arbogne	ROMONT	La Glâne
ECUBLENS	La Broye	TORNY	L'Arbogne
FREIBURG	Saane	VILLAREPOS	Le Chandon
GROLLEY	Bach Grolley	VILLARS-SUR-GLANE	La Glâne
KERZERS	Erligraben	ZUMHOLZ	Sense
LENTIGNY	Bach Lentigny		_

Tabelle 1: Liste der kontrollierten ARA

Die Karte der Entnahmestellen ist in Anhang 1 enthalten (Karte des Messnetzes der Auswirkungen der ARA).

2 Abwasserreinigungsmethode und –prinzip der untersuchten ARA

2.1 Entnahmeprinzip

Die Probenahme wurde durch kontinuierliche Entnahme über einen Zeitraum von 24 Stunden (Probenehmer ISCO für die Bereiche oberhalb und unterhalb und automatischer Probenehmer für den ARA-Auslauf) durchgeführt.

Die Entnahmen wurden systematisch wie folgt vorgenommen (siehe Prinzipschema):

Stelle **OBERHALB**: 50 bis 100 m oberhalb des Auslaufs der ARA, idealerweise unterhalb der

Zusammenflüsse gelegen

Stelle UNTERHALB: auf der 10-fachen Breite des Fliessgewässers im Flusslauf (Flussbett), oberhalb der

Zusammenflüsse gelegen

Stelle beim AUSLAUF: beim ARA-Auslauf, vor Einleitung in das Fliessgewässer gelegen

Die Entnahmestelle unterhalb des Auslaufs wurde auf die 10-fache Breite des Flusses festgelegt. Das ist die Distanz, die nötig ist um nach der Verdünnung wieder ein homogenes Gemisch zu erreichen, das eine befriedigende Wasserqualität aufweisen sollte.

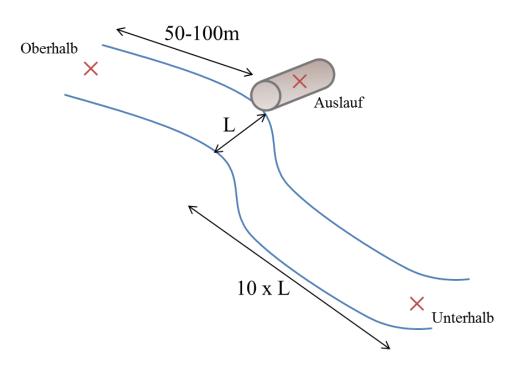


Abbildung 1: Entnahmeprinzip

2.2 Prinzip der Abwasserreinigung

Die Arbeitsweise jeder ARA hinsichtlich Stickstoff- und Phosphorbehandlung hat erhebliche Auswirkungen auf die Interpretation der erzielten Ergebnisse.

ARA	Fliessgewässer	Stickstoffbehandlung			Phosphorbehandlung
		Nitrifikation	Denitrifikation	Grund	Phosphor Entfernung
		NH ₄ » NO ₃	NO ₃ » N ₂		
Autigny	Glâne	ja	ja	Fluss	ja
Broc	Saane	nein	nein	See	ja
Bussy	Petite-Glâne	ja	nein	Fluss	ja
Corserey	Bach Lentigny	ja	nein	Fluss	ja
Cottens	Bach Cottens	ja	nein	Fluss	ja
Domdidier	Arbogne	ja	nein	Fluss	ja
Ecublens	Broye	ja	nein	Fluss	ja
Freiburg	Saane	ja	ja	Fluss	ja
Grolley	Bach Grolley	ja	ja	Fluss	ja
Kerzers	Erligraben	nein	nein	See	ja
Lentigny	Bach Lentigny	ja	nein	Fluss	ja
Marly	Saane	ja	ja	Fluss	ja
Misery	Chandon	ja	nein	Fluss	ja
Montagny	Arbogne	ja	nein	Fluss	ja
Pensier	Sonnaz	nein	nein	See	ja
Posieux	Saane	nein	nein	Fluss	ja
Romont	Glâne	ja	ja	Fluss	ja
Torny	Arbogne	ja	nein	Fluss	ja
Villarepos	Chandon	ja	nein	Fluss	ja
Villars-sur-Glâne	Glâne	ja	nein	Fluss	ja
Zumholz	Sense	ja	nein	Fluss	ja

Tabelle 2: Art der Behandlung von Stickstoff und Phosphor in den untersuchten ARA

3 Gesetzliche Anforderungen

3.1 Beurteilung der Qualität des Auslaufs

Die Qualität des ARA-Auslaufs hat den Anforderungen der Gewässerschutzverordnung (GSchV) des Bundes vom 28. Oktober 1998, Anhang 3.1 zu entsprechen.

2 Allgemeine Anforderungen

Nr.	Parameter	Anforderungen
1	Gesamte ungelöste Stoffe	Für Abwasser aus Anlagen mit weniger als 10 000 EW gilt: - Abflusskonzentration: 20 mg/l (Membranfilter 0,45 μm) Für Abwasser aus Anlagen ab 10 000 EW gilt: - Abflusskonzentration: 15 mg/l (Membranfilter 0,45 μm)
2	Biochemischer Sauerstoffbedarf (BSB ₅ , mit Nitrifikationshemmung)	Für Abwasser aus Anlagen mit weniger als 10 000 EW gilt: - Abflusskonzentration: 20 mg/l O2 und - Reinigungseffekt, bezogen auf Rohabwasser: 90 % Für Abwasser aus Anlagen ab 10 000 EW gilt: - Abflusskonzentration: 15 mg/l O2 und - Reinigungseffekt, bezogen auf Rohabwasser: 90 %
3	Gelöster organischer Kohlenstoff (DOC)	Für Abwasser aus Anlagen ab 2000 EW gilt: - Abflusskonzentration: 10 mg/l und - Reinigungseffekt: 85 %, ausgedrückt in $100*(1 - \frac{\text{mg DOC im gereinigten Abwasser}}{\text{mg Totaler organischer Kohlenstoff im Rohabwasser}})$ Ist der Wert nicht eingehalten, bewertet die Behörde die Stoffe, ermittelt deren Herkunft und legt gegebenenfalls die nach den Anhängen 3.2 und 3.3 erforderlichen Massnahmen fest.
4	Durchsichtigkeit (nach Snellen)	30 cm
5	Ammonium (Summe von NH ₄ ⁺ - N und NH ₃ - N)	Können die Ammoniumkonzentrationen im Abwasser nachteilige Auswirkungen auf die Wasserqualität eines Fliessgewässers haben, gilt für eine Abwassertemperatur von mehr als 10 °C: - Abflusskonzentration: 2 mg/l N und - Wirkungsgrad der Behandlung: 90 %, ausgedrückt in $100*(1-\frac{\text{mg Ammonium-N im gereinigten Abwasser}}{\text{mg Kjeldahl-N im Rohabwasser}})$ In diesen Fällen ist die Nitrifikation ganzjährig durchzuführen. <i>Hinweis:</i> Der Kjeldahl-Stickstoff ist die Summe von Ammonium-Stickstoff, Ammoniak-Stickstoff und organischem Stickstoff.
6	Nitrit (NO_2^N)	0,3 mg/l N (Richtwert)
7	Adsorbierbare organische Halogenverbindungen (AOX)	0,08 mg/l X. Ist der Wert nicht eingehalten, bewertet die Behörde die Stoffe, ermittelt deren Herkunft und legt gegebenenfalls die nach den Anhängen 3.2 und 3.3 erforderlichen Massnahmen fest.

Tabelle 3: Anforderungen an die Einleitung von kommunalem Abwasser in Gewässer (Anhang 3.1 GSchV)

3 Zusätzliche Anforderungen für die Einleitung in empfindliche Gewässer

Nr.	Parameter	Anforderungen
1	Gesamtphosphor	Für Abwasser aus Anlagen
	(nach Aufschluss)	 im Einzugsgebiet von Seen,
		 an Fliessgewässern unterhalb von Seen, wenn dies zum Schutz des
		betreffenden Fliessgewässers erforderlich ist,
		und
		 ab 10 000 EW an Fliessgewässern im Einzugsgebiet des Rheins unterhalb von
		Seen
		gilt:
		 Abflusskonzentration: 0.8 mg/l P
		und
		 Reinigungseffekt, bezogen auf Rohabwasser: 80 %
2	Gesamtstickstoff	Anlagen, bei denen keine Abflusskonzentration und kein Reinigungseffekt für
		Gesamtstickstoff festgelegt ist, müssen so beschrieben werden, dass bei der
		Abwasserreinigung und der Schlammbehandlung möglichst viel Stickstoff
		eliminiert wird. Bauliche Anpassungen sind so weit vorzunehmen, als dies mit
		geringen Aufwand möglich ist; dies gilt insbesondere für Anlagen, die bereits
		eine Nitrifikation durchführen.
		Die Kantone im Einzugsgebiet des Rheins legen bis am 28. Februar 2002 in einer
		Planung fest, wie ab dem Jahre 2005 aus Abwasserreinigungsanlagen 2600
		Tonnen Stickstoff weniger eingeleitet werden als 1995. Anlagen, die in dieser
		Planung zur Stickstoff-Elimination vorgesehen sind, müssen die Stickstoff-
		Elimination spätestens ab dem Jahre 2005 durchführen.

Tabelle 4 : Zusätzliche Anforderungen für die Einleitung in empfindliche Gewässer (Anhang 3.1 GSchV)

3.2 Beurteilung der Qualität des Fliessgewässers oberhalb und unterhalb des Auslaufs

Die Qualität des ARA-Auslaufs hat den Anforderungen der Gewässerschutzverordnung (GSchV) des Bundes vom 28. Oktober 1998, Anhang 3.1 zu entsprechen.

Die Qualität der Fliessgewässer hat den Anforderungen der Gewässerschutzverordnung (GSchV) des Bundes vom 28. Oktober 1998, Anhang 2 zu entsprechen.

12 Zusätzliche Anforderungen an Fliessgewässer

Die nachfolgenden nummerischen Anforderungen gelten bei jeder Wasserführung nach weitgehender Durchmischung des eingeleiteten Abwassers im Gewässer; besondere natürliche Verhältnisse wie Wasserzufluss aus Moorgebieten, seltene Hochwasserspitzen oder seltene Niederwasserereignisse bleiben vorbehalten.

Nr.	Parameter	Anforderungen			
1	Biochemischer Sauerstoffbedarf (BSB ₅)	2 bis 4 mg/l O ₂ Bei natürlicherweise wenig belasteten			
		Gewässern gilt der untere Wert.			
2	Gelöster organischer Kohlenstoff (DOC)	1 bis 4 mg/l C Bei natürlicherweise wenig belasteten			
		Gewässern gilt der untere Wert.			
3	Ammonium (Summe von NH_4^+ - N und NH_3 - N)	Bei Temperaturen:			
		- über 10 °C: 0,2 mg/l N - unter 10 °C: 0,4 mg/l N			
4	Nitrat (NO ₃ -N)	Für Fliessgewässer, die der Trinkwassernutzung dienen: 5,6			
		mg/l N (entspricht 25 mg/l Nitrat)			
5	Blei (Pb)	0,01 mg/l Pb (gesamt)1 0,001 mg/l Pb (gelöst)			
6	Cadmium (Cd)	$0.2~\mu\text{g/l}~Cd~(gesamt)^1~0.05~\mu\text{g/l}~Cd~(gel\"{o}st)$			
7	Chrom (Cr)	0,005 mg/l Cr (gesamt) $^{\rm l}$ 0,002 mg/l Cr (III und VI)			
8	Kupfer (Cu)	$0{,}005~\mathrm{mg/l}~\mathrm{Cu}~\mathrm{(gesamt)^1}~\mathrm{0,}002~\mathrm{mg/l}~\mathrm{Cu}~\mathrm{(gelöst)}$			
9	Nickel (Ni)	0,01 mg/l Ni (gesamt)1 0,005 mg/l Ni (gelöst)			
10	Quecksilber (Hg)	$0.03~\mu g/l~Hg~(gesamt)^1~0.01~\mu g/l~Hg~(gelöst)$			
11	Zink (Zn)	$0.02 \text{ mg/l Zn (gesamt)}^1 0.005 \text{ mg/l Zn (gelöst)}$			
12	Organische Pestizide (Biozidprodukte und	0,1 μg/l je Einzelstoff. Vorbehalten bleiben andere Werte auf			
	Pflanzenschutzmittel)	Grund von Einzelstoffbeurteilungen im Rahmen des			
		Zulassungsverfahrens.			

davon auszugehen, dass auch der Wert für die gelöste Konzentration eingehalten ist.

Tabelle 5: Anforderungen an Fliessgewässer (Anhang 2 GSchV)

Die Beurteilung der Qualität der oberhalb und unterhalb gelegenen Stellen kann auch nach dem vom Bundesamt für Umwelt (BAFU) im Rahmen des Modul-Stufen-Konzepts (MSK), Modul Chemie, entwickelten Klassifikationssystems definiert werden (Quelle: BAFU, *Methoden zur Untersuchung und Beurteilung der Fliessgewässer, Chemisch-physikalische Erhebungen, Nährstoffe,* 2010).

Anhand dieser Methode können die Zahlenwerte und Beschreibungen des Anhangs 2 der GSchV in **Qualitätsziele** umgesetzt werden.

Beurteilung		Bedingung/Beschreibung	Bedingung/Beschreibung			
	sehr gut	Der Schätzwert ⁴ (S) ist kleiner als die halbe Zielvorgabe (Z) ⁵	S < ½ Z	7.1		
	gut	der Schätzwert (S) ist kleiner als die Zielvorgabe (Z)	½ Z ≤ S < Z	Zielvorgabe eingehalten		
	mässig	der Schätzwert (S) ist kleiner als die eineinhalbfache Zielvorgabe (Z)	Z ≤ S < 1,5 * Z			
	unbefriedigend	der Schätzwert (S) ist kleiner als die doppelte Zielvorgabe (Z)	1,5 * Z ≤ S < 2 * Z	Zielvorgabe überschritten (nicht eingehalten)		
	schlecht	der Schätzwert (S) ist gleich wie oder grösser als die doppelte Zielvorgabe (Z)	S ≥ 2 * Z			

Tabelle 6: Beurteilung der Messwerte, Einteilung in Klassen des chemischen Zustands und Definition der Zielvorgabe

Im Folgenden werden die Werte für die einzelnen Parameter getrennt dargestellt.

Beurte	iluna	Ortho-P	Gesamt-P unfiltriert6	Gesamt-P filt.
Dourto	iidiig	[mg/L P]	[mg/L P]	[mg/L P]
	sehr gut	bis < 0,02	Bis < 0,04	bis < 0,025
	gut	0,02 bis < 0,04	0,04 bis < 0,07	0,025 bis < 0,05
	mässig	0,04 bis < 0,06	0,07 bis < 0,10	0,05 bis < 0,075
	unbefriedigend	0,06 bis < 0,08	0,10 bis < 0,14	0,075 bis < 0,10
	schlecht	0,08 und mehr	0,10 bis < 0,14 und mehr	0,10 und mehr
	Schlecht	0,06 und mem	0, 14 und mem	o, to und mem
Beurte	ilung	Nitrit [mg/L N] ⁷	Nitrit [mg/L N]	Nitrit [mg/L N]
		(< 10 mg/L Cl ⁻)	(10 bis 20 mg/L Cl ⁻)	(> 20 mg/L Cl ⁻)
	sehr gut	bis < 0,01	bis < 0,02	bis < 0,05
	gut	0,01 bis < 0,02	0,02 bis < 0,05	0,05 bis < 0,10
	mässig	0,02 bis < 0,03	0,05 bis < 0,075	0,10 bis < 0,15
	unbefriedigend	0,03 bis < 0,04	0,075 bis < 0,10	0,15 bis < 0,20
	schlecht	0,04 und mehr	0,10 und mehr	0,20 und mehr
Daniel	9	A	A	A11410
Beurte	ilung	Ammonium ⁸ [mg/L N] (> 10 °C oder pH > 9)	Ammonium [mg/L N] (< 10 °C)	Nitrat ⁹
	h	1011		[mg/L N]
	sehr gut	bis < 0,04	bis < 0,08	bis < 1,5
	gut	0,04 bis < 0,2	0,08 bis < 0,4	1,5 bis < 5,6
	mässig	0,2 bis < 0,3	0.4 bis < 0.6	5,6 bis < 8,4
	unbefriedigend	0,3 bis < 0,4	0,6 bis < 0,8	8,4 bis < 11,2
	schlecht	0,4 und mehr	0,8 und mehr	11,2 und mehr

Ве	urteilung	Gesamt-N	BSB ₅ 10	DOC 11	TOC 15
		[mg/L N]	[mg/L O ₂]	[mg/L C]	[mg/L C]
	sehr gut	bis < 2,0	bis < 2,0	bis < 2,0	Bis < 2,5
	gut	2,0 bis < 7,0	2,0 bis < 4,0	2,0 bis < 4,0	2,5 bis < 5,0
	mässig	7,0 bis < 10,5	4,0 bis < 6,0	4,0 bis < 6,0	5,0 bis < 7,5
	unbefriedigend	10,5 bis < 14,0	6,0 bis < 8,0	6,0 bis < 8,0	7,5 bis < 10,0
	schlecht	14,0 und mehr	8,0 und mehr	8,0 und mehr	10,0 und mehr

Tabelle 7: Klassierung des chemischen Zustands nach Parametern

Bei der Analyse der Auswirkung des Auslaufs wird beurteilt, ob die Qualität des Fliessgewässers durch die Einleitung der ARA herabgesetzt wird.

Nach den im Rahmen dieser Untersuchung analysierten Parametern sind Gesamtphosphor (unfiltriert), Nitrit (mit Hilfe eines mittleren angenommenen Cl⁻-Wertes, da dieser nicht gemessen wurde), Ammonium, Nitrat, BSB₅ und DOC mittels der Tabellen des MSK – Modul Chemie interpretierbar.

Die im Modul Chemie vorgeschlagene Klassifikation beruht jedoch auf einer Messreihe (mindestens 12 Proben), und aus den Resultaten werden statistische Schätzwerte (90. Perzentil) berechnet, was im Rahmen der vorliegenden Untersuchung nicht der Fall ist.

4 Ergebnisse

Die Ergebnisse werden im Anhang in Form von Tabellen (Anhänge 2 und 3) und Zusammenfassungen (Anhang 4) dargestellt.

Insgesamt hat über die Hälfte der untersuchten ARA-Ausläufe (12 von 21) Auswirkungen auf die Fliessgewässerqualität. Trotz des erheblichen Verdünnungseffekts ist dies sogar bei Abläufen mit Einleitung in grosse Fliessgewässer zu beobachten (ARA in Broc und in Ecublens).

Der Wert für Zink wird in den Fliessgewässern sowohl oberhalb als auch unterhalb der Ausläufe systematisch überschritten. Dies ist ein bekanntes Phänomen (Rohrleitungen, Pneumatik ...), die Massnahmen zur Reduktion von Zink in Fliessgewässern befinden sich noch im Entwicklungsstadium.

4.1 Phosphor

Während die Ergebnisse für Phosphor in den Ausläufen fast alle konform sind (mit Ausnahme der ARA in Cottens, Romont und Villarepos) und obwohl die Phosphatfällungsstufe in den ARA durchgängig vorhanden ist, liegen die Ergebnisse für Phosphor in den Fliessgewässern häufig unter dem erwarteten Qualitätsziel unterhalb der Ausläufe (10 von 21 ARA).

4.2 Stickstoff

Auch beim Stickstoff liegen die Ergebnisse in den Fliessgewässern für Ammonium, Nitrit und Nitrat zusammengenommen trotz der Stickstoffbehandlung unter dem Qualitätsziel (10 von 21 ARA).

Zwei ARA (Ecublens und Lentigny) weisen im Ablauf annehmbare Ammonium- und Nitritwerte auf (unter dem Grenzwert der GSchV). Die Auswirkung auf das Fliessgewässer wird trotzdem festgestellt. Die geringen Wassermengen in der Broye (ARA in Ecublens) und im Bach von Lentigny haben ein ungünstiges Verdünnungsverhältnis zur Folge, das kleiner ist als 1/10.

Die ARA von Bussy und Villars-sur-Glâne erreichen gute Ergebnisse bei Ammonium, während der Nitritgehalt in den Ausläufen überschritten wird und so das Fliessgewässer im Abstrombereich beeinträchtigt. Das Nitrifikationsverfahren funktionierte vermutlich nicht optimal.

Die ARA von Autigny und Domdidier weisen in den Ausläufen Ammonium- und Nitritwerte auf, die die Grenzwerte der GSchV überschreiten. Die Beeinträchtigung des Fliessgewässers für diese Parameter wurde ebenfalls gemessen. Dennoch sind diese ARA mit einer Nitrifikationsbehandlung (+ Denitrifikation für Autigny) ausgestattet.

Auch die ARA von Marly und Torny besitzen in den Ausläufen Ammonium- und Nitritwerte, die die Grenzwerte der GSchV überschreiten, ohne jedoch eine Schädigung des Fliessgewässers im Abstrombereich zu bewirken. Dies ist sicherlich einem schnellen Verdünnungs- und Selbstreinigungseffekt zu verdanken.

Der Erligraben in Kerzers erreicht sowohl oberhalb als auch unterhalb des Auslaufs der ARA schlechte Resultate. Eine Verlängerung der Probenahmekampagne wäre deshalb sinnvoll, da Sanierungsmassnahmen in dem oberhalb der Anlage gelegenen Industriegebiet stattfinden.

Die Auswirkung der Einleitungen in die Fliessgewässer ist in Anhang 5 zusammengefasst.

5 Perspektiven

Die Verlängerung der Probenahmekampagne könnte in Betracht gezogen werden, insbesondere in der Niedrigwasserperiode. Die Ergebnisse müssten ausserdem in Beziehung zu den Wassermengen bei Niedrigwasser gesetzt werden, um festzustellen, ob die negative Auswirkung auf das Fliessgewässer auf einen Wassermangel im Fluss oder auf ein Defizit im Abwasserreinigungsverfahren der ARA zurückzuführen ist.

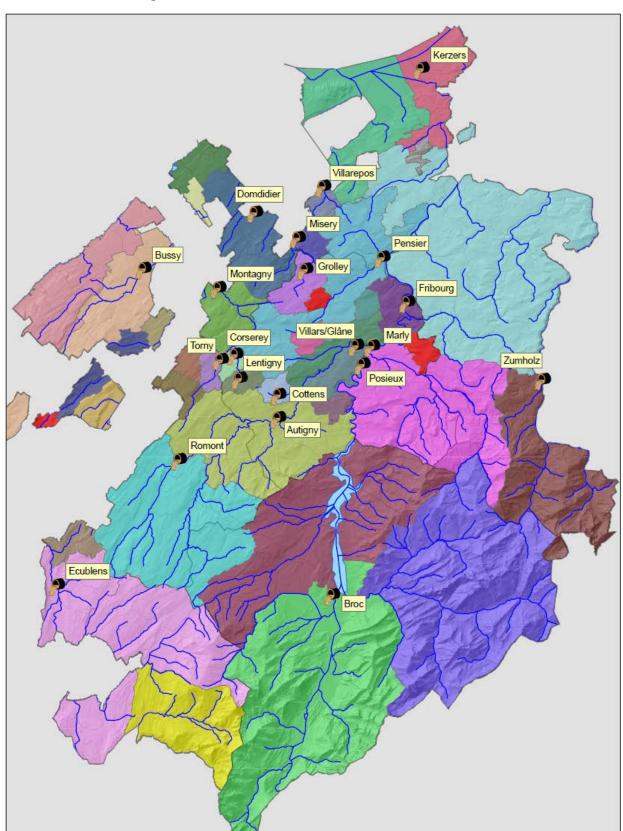
Im Zuge eines Ausbaus oder eventuellen Umbaus einer ARA muss beurteilt werden, wie sich die Änderungen qualitativ und quantitativ auf das Fliessgewässer auswirken. Ein Ausgangszustand müsste durch eine Verlängerung der Probenahmekampagnen entsprechend den Wassermengen (Niedrigwasser-, Normal- und Hochwasserphase) definiert werden. Das Ziel wäre dann, entweder dafür zu sorgen, dass durch die an der Anlage vorgenommenen Änderungen keine Beeinträchtigungen an dem Fliessgewässer hervorgerufen werden, oder diese Arbeiten zu nutzen, um die Qualität der Anlage zu verbessern, falls diese bereits schlecht sein sollte, was anscheinend bei der Hälfte der hier untersuchten ARA der Fall ist.

Auskunft

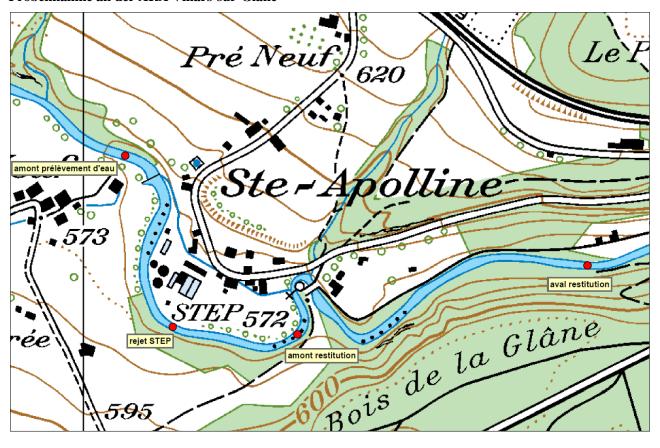
Amt für Umwelt AfU Sektion Gewässerschutz

Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/sen


Juni 2015

6 Anhänge


- > Anhang 1: Karte des Messnetzes der Auswirkungen der ARA
- > Anhang 2: Übersichtstabelle aller Ergebnisse
- > Anhang 3: Übersichtstabelle mit Klassifikation gemäss MSK
- > Anhang 4: Zusammenfassungen nach ARA und Ergebnistabellen mit Grenzwerten der GSchV
- > Anhang 5: Überblick der Auswirkung der Ausläufe auf die Fliessgewässer

A1 Karte des Messnetzes der Auswirkungen der ARA

Messnetz der Auswirkungen der ARA

Probennahme an der ARA Villars-sur-Glâne

Die Probeentnahmeorte der ARA Villars-sur-Glâne befinden sich oberhalb des Auslaufes und des Wasserentnahmeortes ("amont prélèvement d'eau"), beim Auslauf ("rejet STEP"), unterhalb des Auslaufes aber oberhalb der Wasserrückführung ("amont restitution") und unterhalb der Wasserrückführung ("aval restitution").

A2 Übersichtstabelle aller Ergebnisse

BROC	berhalb uuslauf hterhalb berhalb berhalb uuslauf	569'109 / 175'921 569'172 / 175'873 569'239 / 175'854 573'568 / 161'969 573'429 / 162'212 573'410 / 162'200 558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'617 565'958 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750 571'337 / 187'145	14.07.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009 17.12.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009	[μS/cm] 556 1120 604 525 1026 563 628 966 665 618 1250 625 596 1009 626 586 1042 625 458 1134 544	[mg/L] 2 bis 4 6 7 4 0 0 0 0 0 0 0 0 30 0 0 4 11 5	mg/L	[mg/L] 1 bis 4 3.2 7.7 3.2 <1.5 10.1 1.9 2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0 3.8 12	[mg/L] 5 10 7 6 5 3 11 9 12 6 8 12 42 6 7 9 8 7
AUTIGNY AUTIGNY APPENSIER AUTIGNY APPENSIER APPENS	suslauf sterhalb sterhalb suslauf sterhalb suslauf sterhalb suslauf sterhalb suslauf sterhalb	569'172 / 175'873 569'239 / 175'854 573'568 / 161'969 573'429 / 162'212 573'410 / 162'200 558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	14.07.2009 14.07.2009 17.12.2009 17.12.2009 17.12.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	1120 604 525 1026 563 628 966 665 618 1250 625 596 1009 626 586 1042 625 458	6 77 4 0 0 0 0 0 0 6 1 1 0 0 0 0 0 0 0 0 0 0 0	24 <15 <15 32 <15 <15 38 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15	3.2 7.7 3.2 <1.5 10.1 1.9 2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0 3.8	10 77 6 55 33 111 9 12 6 6 8 12 42 42 6 7
BROC	suslauf sterhalb sterhalb suslauf sterhalb suslauf sterhalb suslauf sterhalb suslauf sterhalb	569'172 / 175'873 569'239 / 175'854 573'568 / 161'969 573'429 / 162'212 573'410 / 162'200 558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	14.07.2009 14.07.2009 17.12.2009 17.12.2009 17.12.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	1120 604 525 1026 563 628 966 665 618 1250 625 596 1009 626 586 1042 625 458	7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 <15 <15 32 <15 <15 38 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15	7.7 3.2 <1.5 10.1 1.9 2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0 3.8	10 77 6 55 33 111 9 12 6 6 8 12 42 42 6 7
BROC	nterhalb berhalb suslauf	569'239 / 175'854 573'568 / 161'969 573'429 / 162'212 573'410 / 162'200 558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	14.07.2009 17.12.2009 17.12.2009 17.12.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009	604 525 1026 563 628 966 665 618 1250 625 596 1009 626 586 1042 625 458 1134 544	4 0 0 0 0 0 0 6 1 1 0 0 0 0 0 0 0 0 0 0 0	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15	3.2 <1.5 10.1 1.9 2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0 3.8	7 6 5 3 111 9 12 6 6 8 12 42 42 6 7
BROC O A Uti BUSSY O CORSEREY O COTTENS O DOMDIDIER O DOMDIDIER O ECUBLENS O FREIBURG O GROLLEY O A Uti BERY O A D Uti BERY O A BERY O A BERY O	berhalb suslauf sterhalb berhalb berhalb suslauf sterhalb berhalb berhalb berhalb suslauf	573'568 / 161'969 573'429 / 162'212 573'410 / 162'200 558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	17.12.2009 17.12.2009 17.12.2009 28.04.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009	525 1026 563 628 966 665 618 1250 625 596 1009 626 586 1042 625 458 1134 544	0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<15 32 <15 <15 38 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15	<1.5 10.1 1.9 2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0 3.8	6 5 3 111 9 12 6 6 8 12 42 6 7
BUSSY	suslauf interhalb berhalb berhalb suslauf interhalb berhalb suslauf interhalb berhalb	573'429 / 162'212 573'410 / 162'200 558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 552'323 / 162'648 552'232 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	17.12.2009 17.12.2009 28.04.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009	1026 563 628 966 665 618 1250 625 596 1009 626 586 1042 625 458 1134 544	0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32 <15 <15 <15 <29 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15	10.1 1.9 2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0	5 3 111 9 122 6 6 8 12 42 6 7 7
BUSSY	nterhalb berhalb suslauf	573'410 / 162'200 558'672 / 187'215 558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 552'323 / 162'648 552'232 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	17.12.2009 28.04.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009	563 628 966 665 618 1250 625 596 1009 626 586 1042 625 458 1134	0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<15 <15 <15 <15 <15 <29 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15	1.9 2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0	3 111 9 122 6 6 8 12 42 6 7 9 9
BUSSY CORSEREY O	berhalb suslauf sterhalb berhalb berhalb suslauf sterhalb berhalb berhalb berhalb	558'672 / 187'215 558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	28.04.2009 28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009	628 966 665 618 1250 625 596 1009 626 586 1042 625 458 1134 544	0 6 1 0 0 0 0 30 0 0 0 30 0 0 4	<15 38 <15 <15 29 <15 <15 <15 <15 31 <15 <15 <15 46	2.5 10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0	11 9 12 6 6 8 12 42 6 7 9 8 7
CORSEREY	suslauf interhalb berhalb berhalb suslauf	558'751 / 187'267 558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	28.04.2009 28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009	966 665 618 1250 625 596 1009 626 586 1042 625 458 1134 544	6 1 0 0 0 0 30 0 0 0 30 0 0 4 11	38 <15 <15 <29 <15 <15 <15 <31 <15 <15 <15 <46	10 3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0	9 12 6 6 8 12 42 6 7 9 8
CORSEREY	nterhalb berhalb suslauf	558'861 / 187'333 565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	28.04.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	665 618 1250 625 596 1009 626 586 1042 625 458 1134 544	1 0 0 0 0 30 0 0 30 0 0 3 0 4 11	<15 <15 29 <15 <15 93 <15 <15 <15 <15 <15 46	3.4 4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0	12 6 6 8 12 42 6 7 9 8
CORSEREY O A Uti COTTENS O O O A Uti D OMDIDIER O O ECUBLENS O O A Uti FREIBURG O O FREIBURG O O O O O O O O O O O O O	berhalb suslauf sterhalb suslauf	565'975 / 180'617 565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	618 1250 625 596 1009 626 586 1042 625 458 1134 544	0 0 0 0 30 0 0 0 30 0 0 4	<15 29 <15 <15 93 <15 <15 <15 <15 <15 46	4.0 10 3.8 4.0 12 4.3 2.8 9.5 3.0	6 8 12 42 6 7 9 8
A Utility COTTENS O A	suslauf Interhalb Interhal	565'958 / 180'660 565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	24.03.2009 24.03.2009 24.03.2009 24.03.2009 24.03.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	1250 625 596 1009 626 586 1042 625 458 1134 544	0 0 0 30 0 0 0 3 0 4 11	29 <15 <15 93 <15 <15 31 <15 <15 46	10 3.8 4.0 12 4.3 2.8 9.5 3.0	6 8 12 42 6 7 9 8
COTTENS	nterhalb berhalb	565'953 / 180'727 569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	24.03.2009 24.03.2009 24.03.2009 24.03.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	625 596 1009 626 586 1042 625 458 1134 544	0 0 30 0 0 0 3 0 4 11	<15 <15 93 <15 <15 <15 <15 <15 <15 <16 <16 <16	3.8 4.0 12 4.3 2.8 9.5 3.0	8 12 42 6 7 9 8 7
COTTENS O A U DOMDIDIER O F U C ECUBLENS O F U F FREIBURG O F U G GROLLEY O F U MARLY O MARLY O MISERY O MONTAGNY O F D U D D D D D D D D D D D	berhalb	569'170 / 177'662 569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	24.03.2009 24.03.2009 24.03.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009	596 1009 626 586 1042 625 458 1134 544	0 30 0 0 3 0 4 11	<15 93 <15 <15 31 <15 <15 46	4.0 12 4.3 2.8 9.5 3.0 3.8	12 42 6 7 9 8 7
A Ui Ui Ui Ui Ui Ui Ui	suslauf Interhalb Interhal	569'214 / 177'635 569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	24.03.2009 24.03.2009 28.04.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	1009 626 586 1042 625 458 1134	30 0 0 3 0 4 11	93 <15 <15 31 <15 <15 46	12 4.3 2.8 9.5 3.0 3.8	42 6 7 9 8 7
DOMDIDIER	nterhalb berhalb huslauf nterhalb berhalb huslauf hterhalb berhalb berhalb huslauf hterhalb berhalb	569'259 / 177'650 567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	24.03.2009 28.04.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 17.12.2009 17.12.2009	626 586 1042 625 458 1134 544	0 0 3 0 4 11	<15 <15 31 <15 <15 46	4.3 2.8 9.5 3.0 3.8	6 7 9 8 7
DOMDIDIER	berhalb suslauf nterhalb berhalb suslauf nterhalb berhalb berhalb suslauf nterhalb berhalb suslauf	567'312 / 191'667 567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	28.04.2009 28.04.2009 28.04.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009	586 1042 625 458 1134 544	3 0 4 11	<15 31 <15 <15 46	2.8 9.5 3.0 3.8	7 9 8 7
FREIBURG	suslauf sterhalb suslauf sterhalb sterhalb sterhalb suslauf sterhalb suslauf sterhalb	567'375 / 191'684 567'479 / 191'686 552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	28.04.2009 28.04.2009 14.07.2009 14.07.2009 14.07.2009 17.12.2009	1042 625 458 1134 544	0 4 11	31 <15 <15 46	9.5 3.0 3.8	8 7
ECUBLENS Page	berhalb huslauf hterhalb berhalb huslauf hterhalb	552'323 / 162'648 552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	14.07.2009 14.07.2009 14.07.2009 17.12.2009	458 1134 544	4	<15 46	3.8	7
FREIBURG	nterhalb berhalb suslauf hterhalb	552'267 / 162'800 552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	14.07.2009 14.07.2009 17.12.2009 17.12.2009	1134 544	11	46		
Ui FREIBURG	berhalb suslauf nterhalb berhalb	552'186 / 162'936 578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	14.07.2009 17.12.2009 17.12.2009	544			12	
FREIBURG	suslauf nterhalb berhalb	578'791 / 184'541 578'980 / 184'640 579'208 / 184'750	17.12.2009 17.12.2009		5	_15		16
A Ui O O O O O O O O O	nterhalb berhalb	578'980 / 184'640 579'208 / 184'750	17.12.2009	419		~10	4.5	8
Ui Oi F Oi Oi Oi Oi Oi Oi	nterhalb berhalb	579'208 / 184'750			0	<15	2.1	12
GROLLEY	berhalb		47.40.0000	1183	0	30	9.2	11
F Ui		571'337 / 187'145	17.12.2009	418	0	<15	2.1	13
UI KERZERS			31.03.2009	691	0	<15	3.0	9
KERZERS	uslauf	571'331 / 187'215	31.03.2009	845	0	19	5.4	5
A Ut Ut	nterhalb	571'328 / 187'290	31.03.2009	732	0	<15	3.2	13
UI	berhalb	580'476 / 202'628	14.07.2009	761	6	<15	3.7	10
LENTIGNY	uslauf	580'453 / 202'637	14.07.2009	1237	10	34	9.7	14
A Ui MARLY	nterhalb	580'308 / 202'761	14.07.2009	1085	14	36	9.6	22
MARLY O A MISERY O MISERY O A Uti MONTAGNY O A Uti PENSIER O A	berhalb	566'338 / 178'723	24.03.2009	647	0	<15	2.9	8
MARLY O # UI MISERY O # UI MONTAGNY O # UI PENSIER O	uslauf	566'317 / 178'780	24.03.2009	761	16	56	15	10
A Ui Ui	nterhalb	566'279 / 178'872	24.03.2009	665	2	19	4.8	12
Ui MISERY	berhalb	576'135 / 180'934	17.12.2009	417	0	<15	2.3	15
MISERY	uslauf	576'260 / 181'140	17.12.2009	993	3	52	15.8	
MONTAGNY	nterhalb	576'513 / 18'373	17.12.2009	405	0	<15	2.0	5
Ui MONTAGNY O	berhalb uslauf	570'693 / 189'617 570'750 / 189'663	31.03.2009	1132	0	<15 28	2.7 8.1	6
MONTAGNY O # Ur PENSIER O # #	nterhalb	570 / 750 / 189 / 735	31.03.2009	649	0	<15	2.7	4
PENSIER O	berhalb	564'794 / 185'854	31.03.2009	571	0	<15	2.9	6
PENSIER O	uslauf	564'740 / 185'847	31.03.2009	959		27	6.7	11
PENSIER O	nterhalb	564'652 / 185'873	31.03.2009	578		<15	3.0	7
	berhalb	577'243 / 188'074	17.12.2009	669		<15	3.2	4
	uslauf	577'282 / 188'333	17.12.2009	2130	13	65	15	13
	nterhalb	577'294 / 188'224	17.12.2009	464		<15	2.4	24
POSIEUX O	berhalb	575'748 / 179'974	28.04.2009	466	0	<15	2.1	6
	uslauf	575'595 / 179'903	28.04.2009	1851	7	53	15	15
Ur	nterhalb	575'990 / 179'678	28.04.2009	466	0	<15	2.3	5
ROMONT O	berhalb	561'385 / 172'517	14.07.2009	536	7	17	2.7	21
A	uslauf	561'457 / 172'546	14.07.2009	1057	4	20	6.4	13
Uı	nterhalb	561'587 / 172620	14.07.2009	665	5	<15	3.5	11
TORNY O	berhalb	564'759 / 180'282	24.03.2009	542	0	<15	4.0	4
	uslauf	564'800 / 180'300	24.03.2009	1198	8	49	15	14
Ur	nterhalb	564'822 / 180'359	24.03.2009	544	0	<15	3.8	6
	berhalb	572'679 / 193'539	31.03.2009	632	0	<15	2.5	6
	uslauf	572'691 / 193'606	31.03.2009	857	19	63	6.2	57
		572'728 / 193'660	31.03.2009	634	0	<15	2.6	6
	nterhalb	575'064 / 181'736	26.11.2009	523	0	20	5.1	9
	nterhalb berhalb	575'154 / 181'454	26.11.2009	890	6	38	8.7	11
	nterhalb berhalb suslauf	575'374 / 181'425	26.11.2009	543	0	19	5.1	9
	nterhalb berhalb suslauf o vor Rückgabe	575'892 / 181'548	26.11.2009	532	0	20	5.3	6
	berhalb suslauf o vor Rückgabe nach Rückgabe	E001004 / :==:===	28.04.2009	412		<15	2.0	12
	nterhalb berhalb suslauf o vor Rückgabe	589'621 / 178'565 589'651 / 178'670	28.04.2009	764	5	43	11	16

Mandat 1	Probe	N-NH4	N-NO2	N-NO3	O2 gelöst	O2 gesätt.	P tot	рН	Q	Snellen
		[mg/L]	[mg/L]	[mg/L]	[mg/L]	[%]	[mg/L]		[m3/d]	[cm]
Wert GSchV Anhang 2		0.2 bis 0.4		5.6						
AUTIGNY	Oberhalb	0	0.02	2.38	9.6	109	0.055	7.9		60
	Auslauf	3.51	0.94	25.7	8	88	0.247	7.8	2538	39
	Unterhalb	0.24	0.11	4.55	9.4	108	0.078	8.0		60
BROC	Oberhalb	0.14	0.01	1.0	12.8	962	0.011	8.2	4005	60
	Auslauf Unterhalb	21.6	0.42	12.3	11.1	98	0.469	7.8	4205	38 60
BUSSY	Oberhalb	0.16	0.04	6.89	10.8	100	0.052	8.3		58
20001	Auslauf	0.91	1.86	24.3	10.5	95	0.319	7.8	1864	41
	Unterhalb	0.16	0.22	8.57	10.1	94	0.077	8.4	1004	57
CORSEREY	Oberhalb	0.2	0.03	5.73	11.7	99	0.045	8.3		35
	Auslauf	12.8	1.7	6.74	6.2	60	0.253	7.5	60	28
	Unterhalb	0.29	0.05	5.78	11.6	98	0.052	8.3		34
COTTENS	Oberhalb	0.18	0.01	4.26	11.3	98	0.057	8.2		30
	Auslauf	14.6	0.21	0.47	6.9	63	1.11	7.6	828	5
·	Unterhalb	0.96	0.03	4.08	11.3	99	0.122	8.2		22
DOMDIDIER	Oberhalb	<0.1	0.03	6.22	9.9	93	0.017	8.3		60
	Auslauf	4.79	0.33	18.9	8.4	83	0.308	8.0	1935	44
	Unterhalb	0.44	0.06	7.7	9.7	91	0.062	8.4		60
ECUBLENS	Oberhalb	0	0.01	0.95	10.2	121	0.047	8.0		60
	Auslauf	0.25	0.44	<u>49.9</u> 5.98	9.4	131	0.663	7.4	2882	<u>19</u>
FREIBURG	Unterhalb Oberhalb	0.51	0.24	1.05	12.6	92	0.026	8.2		42
TREIDORG	Auslauf	1.67	0.09	11.5	11	107	0.662	8.1	15290	43
	Unterhalb	<0.1	0.01	0.97	12.8	94	0.03	8.3		41
GROLLEY	Oberhalb	0.16	0.04	5.51	11	97	0.06	8.1		60
	Auslauf	0	0.03	10.2	10.1	89	0.375	8.0	473	50
	Unterhalb	<0.1	0.04	6.63	10.5	94	0.143	8.2		50
KERZERS	Oberhalb	0.95	0.06	9.41	8.2	90	0.153	7.8		60
	Auslauf	22.3	0.16	7.08	7.1	74	0.23	7.7	3260	25
	Unterhalb	20.8	0.15	3.45	4.7	53	0.271	7.6		60
LENTIGNY	Oberhalb	0.11	0.01	5.54	10.8	93	0.056	8.0		40
	Auslauf	1.85	0.19	6.1	10.2	92		8.2	382	18
MADLY	Unterhalb	0.41	0.05	5.52	10.3	89	0.101	8.1		22
MARLY	Oberhalb Auslauf	<0.1 6.03	0.01	0.83	9.5	95 81	0.017	7.4	7344	42 32
	Unterhalb	<0.1	0.2	0.8	11.9	88	0.016	8.1	7 344	60
MISERY	Oberhalb	0	0.01	4.83	12.5	103	0.043	8.3		60
MIOLICI	Auslauf	0.59	0.18	31.9	10.5	91	0.43	7.9	75	60
	Unterhalb	0	0.02	5.04	12.3	103	0.048	8.3		60
MONTAGNY	Oberhalb	0	0.01	4.48	12.1	100	0.023	8.4		60
	Auslauf	0	0.06	31.5	9.3	75	0.238	7.8	472	52
	Unterhalb	0	0.01	4.69	12.3	102	0.028	8.4		60
PENSIER	Oberhalb	0.84	0.03	4.41	12.9	95	0.086	8.3		60
	Auslauf	101	0.48	1.0	8.9	80	0.517	8.2	7156	15
	Unterhalb	0.26	0.02	1.28	13.4	99	0.041	8.2		21
POSIEUX	Oberhalb	<0.1	0.01	1.65	10.3	93	0.008	8.3		60
	Auslauf	4.36	1.71	32.4	7.6	78	0.459	7.8	718	23
DOMONIT	Unterhalb	<0.1	0.01	1.63	10.6	94	0.014	8.4		60
ROMONT	Oberhalb	<0.1	0.01	1.62	8	92	0.063	7.8	2702	60 44
	Auslauf Unterhalb		0.05	4.95	7.1	95 84	0.888	7.7	2782	60
TORNY	Oberhalb	0.09	0.02	2.88	12.1	100	0.025	8.5		41
TOTAL	Auslauf	10.4	0.99	32.8	6.7	60	0.445	7.8	121	16
	Unterhalb	0.13	0.01	3.05	12.1	100	0.027	8.4		35
VILLAREPOS	Oberhalb	0	0.02	5.23	12.3	103	0.029	8.4		60
	Auslauf	0.71	0.42	15.9	7	60	1.55	7.8	536	7
	Unterhalb	0	0.02	5.3	12.3	102	0.072	8.4		60
VILLARS-SUR-GLANE	Oberhalb	0.24	0.03	3.55	11.1	102	0.102	8.3		54
	Auslauf	0.73	0.97	24.3	9.1	82	0.763	7.7	5240	34
	Unterhalb vor Rückgabe	0.25	0.09	4.62	10.9	100	0.144	8.3		51
	Unterhalb nach Rückgabe	0.22	0.05	3.97	10.7	98	0.118	8.3		55
ZUMHOLZ	Oberhalb	0	0	0.74	10.5	97	0.011	8.2		50
	Auslauf	<0.1	0.1	27.8	8.8	86	0.664	7.6	2188	18
	Unterhalb	0	0	0.45	10.5	98	0.015	8.4		39

Mandat 1	Probe	Temp	Hg	Cd	Cr tot	Cu	Ni	Pb	Zn
		[°C]	[μg/L]	[μg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]	[µg/L]
Wert GSchV Anhang 2		<25°C	0.01	0.05	2	2	5	1	5
AUTIGNY	Oberhalb	17.7	0	<0.5	<1	1.7	<1	<1	5
	Auslauf	16.5	0	<0.5	<1	10.0	12	<1	258
	Unterhalb	17.6	0	<0.5	<1	2.0	1.1	<1	6.6
BROC	Oberhalb	2.8	0	<0.1	1.2	0.7	1.4	<0.5	16
	Auslauf	9.8	0	<0.1	2.3	5.9	5.1	<0.5	33
	Unterhalb	1.9	0	<0.1	1.1	1.0	1.3	<0.5	21
BUSSY	Oberhalb	9.2	0	<0.1	2.4	7.8	2.8	<0.5	19
	Auslauf	11.9	0	<0.1	1.7	4.9	5.5	<0.5	21
	Unterhalb	9.9	0	<0.1	2.3	8.2	3.0	<0.5	16
CORSEREY	Oberhalb	4.9	0	<0.1	1.4	2.0	1.2	<0.5	7.4
	Auslauf	8.0	0	<0.1	6.2	27.0	9.9	0.7	61
	Unterhalb	4.8	0	<0.1	1.2	2.1	0.7	<0.5	7.5
COTTENS	Oberhalb	5.9	0	<0.1	1.6	4.1	1.1	<0.5	15
	Auslauf	7.6	0	<0.1	5.3	2.8	3.0	<0.5	10
	Unterhalb	5.9	0	<0.1	1.6	4.5	0.9	<0.5	12
DOMDIDIER	Oberhalb	10.1	0	<0.1	1.9	1.7	2.5	<0.5	7.9
	Auslauf	10.4	0	<0.1	2.1	10.0	4.5	<0.5	40
FOLIDI FNO	Unterhalb	10.2	0	<0.1	1.7	1.9	2.6	<0.5	18
ECUBLENS	Oberhalb	19.8	0	<0.5	<u><1</u>	4.6	<1	<1	5.3
	Auslauf	18.3	0	<0.5	<1	7.9	3.7	<1	26
	Unterhalb	19.8	0	<0.5	<1	5.6	1	<1	22
FREIBURG	Oberhalb	5.0	0	<0.1	1.0	1.1	2.3	<0.5	16
	Auslauf	14.0	0	<0.1	2.6	6.1	5.9	<0.5	25
	Unterhalb	5.1	0	<0.1	<0.5	0.9	0.7	<0.5	13
GROLLEY	Oberhalb	7.0	<0.05	<0.1	1.8	1.9	0.7	<0.5	29
	Auslauf	7.3	<0.05	<0.1	4.1	3.2	1.5	<0.5	20
	Unterhalb	7.6	<0.05	<0.1	2.2	2.8	0.9	<0.5	33
KERZERS	Oberhalb	16.4	0	<0.5	<1	1.9		7.2 <1	8.8
	Auslauf	18.6	0	<0.5	<1	4.5			51
	Unterhalb	18.4	0	<0.5	<1	4.1	7.3	<1	20
LENTIGNY	Oberhalb	5.6	<0.05	<0.1	1.8	2.1	1.0	<0.5	18
	Auslauf	7.5		<0.1	3.4	3.7	2.9	<0.5	15
	Unterhalb	5.5	<0.05	<0.1	1.6	2.0	1.2	<0.5	17
MARLY	Oberhalb	5.5	0	<0.1	0.8	1.1	1.4	<0.5	38
	Auslauf	10.0	0	0.2	2.3	8.3	4.2	<0.5	115
	Unterhalb	6.0	0	<0.1	0.8	1.3	1.2	<0.5	22
MISERY	Oberhalb	4.9	0	<0.1	1.4	1.6	0.7	<0.5	24
	Auslauf	8.5	0	<0.1	6.9	9.6	8.8	<0.5	21
	Unterhalb	5.4	<0.05	<0.1	1.3	2.1	0.5	<0.5	25
MONTAGNY	Oberhalb	5.2	0	<0.1	1.0	1.8	0.6	<0.5	16
	Auslauf	9.5	<0.05	<0.1	6.5	8.2	2.1	<0.5	26
	Unterhalb	5.4	<0.05	<0.1	1.0	1.6	<0.5	<0.5	13
PENSIER	Oberhalb	2.0	0	<0.1	2.9	2.0	9.5	<0.5	18
	Auslauf	12.9	0	<0.1	5.5	9.9	24	<0.5	48
	Unterhalb	4.5	0	<0.1	1.1	1.3	1.6	<0.5	29
POSIEUX	Oberhalb	7.7	0	<0.1	0.8	1.2	2.3	<0.5	8.4
	Auslauf	12.2	0	<0.1	2.9	13.0	70.0	<0.5	49
	Unterhalb	7.0	0	<0.1	1.1	1.1	2.5	<0.5	10
ROMONT	Oberhalb	18.6	0	<0.5	<1	3.1	<1	<1	5.1
	Auslauf	17.8	0	<0.5	<1	4.5	6	<1	21
	Unterhalb	18.9	0	<0.5	<1	4.1	1.9	<1	9.8
TORNY	Oberhalb	4.1	0	<0.1	1.0	1.9	1.2	<0.5	11
	Auslauf	7.0	<0.05	<0.1	6.1	5.8	9.5	<0.5	68
	Unterhalb	4.0	<0.05	<0.1	1.2	2.1	0.7	<0.5	7.5
VILLAREPOS	Oberhalb	6.0	<0.05	<0.1	1.3	1.5	<0.5	<0.5	16
	Auslauf	8.9	<0.05	<0.1	4.8	2.1	3.6	<0.5	11
	Unterhalb	5.3	0	<0.1	1.3	2.0	0.5	<0.5	21
VILLARS-SUR-GLANE	Oberhalb	8.2	0	<0.1	1.5	4.1	1	<0.5	20
	Auslauf	15.0	0	<0.1	3.2	5.3	5.9	<0.5	30
	Unterhalb vor Rückgabe	8.5	0	0.1	1.0	3.5	0.7	<0.5	25
	Unterhalb nach Rückgabe	8.1	0	<0.1	1.3	5.5	1.4	<0.5	38
ZUMHOLZ	Oberhalb	7.8	0	<0.1	0.6	1.1	2.0	<0.5	14
	Auslauf	10.0	0	<0.1	1.0	3.6	4.6	<0.5	21

A3 Übersichtstabelle mit Klassifikation gemäss MSK

Mandat 1	Probe	Probe	Entnahmedatum	BSB5 [mg/L]	DOC [mg/L]	N-NH ₄ [mg/L]	N-NO ₂ [mg/L]	N-NO₃ [mg/L]	P tot [mg/L]
Wert GSchV Anhang 2				2 bis 4	1 bis 4	0.2 bis 0.4	[mg/L]	5.6	[9/=]
AUTIGNY	Oberhalb	569'109 / 175'921	14.07.2009	6	3.2	0	0.02	2.38	0.055
	Auslauf	569'172 / 175'873	14.07.2009	7	7.7	3.51	0.94	25.7	0.247
	Unterhalb	569'239 / 175'854	14.07.2009	4	3.2	0.24	0.11	4.55	0.078
BROC	Oberhalb	573'568 / 161'969	17.12.2009	0	<1.5	0.14	0.01	1.0	0.011
	Auslauf	573'429 / 162'212	17.12.2009	0	10.1	21.6	0.42	12.3	0.469
	Unterhalb	573'410 / 162'200	17.12.2009	0	1.9	1.1	0.04	1.67	0.032
BUSSY	Oberhalb	558'672 / 187'215	28.04.2009	0	2.5	0.16	0.03	6.89	0.052
	Auslauf	558'751 / 187'267	28.04.2009	6	10	0.91	1.86	24.3	0.319
	Unterhalb	558'861 / 187'333	28.04.2009	1	3.4	0.16	0.22	8.57	0.077
CORSEREY	Oberhalb	565'975 / 180'617	24.03.2009	0	4.0	0.2	0.03	5.73	0.045
	Auslauf	565'958 / 180'660	24.03.2009	0	10	12.8	1.7	6.74	0.253
	Unterhalb	565'953 / 180'727	24.03.2009	0	3.8	0.29	0.05	5.78	0.052
COTTENS	Oberhalb	569'170 / 177'662	24.03.2009	0	4.0	0.18	0.01	4.26	0.057
	Auslauf	569'214 / 177'635	24.03.2009	30	12	14.6	0.21	0.47	1.11
	Unterhalb	569'259 / 177'650	24.03.2009	0	4.3	0.96	0.03	4.08	0.122
DOMDIDIER	Oberhalb	567'312 / 191'667	28.04.2009	0	2.8	<0.1	0.03	6.22	0.017
	Auslauf	567'375 / 191'684	28.04.2009	3	9.5	4.79	0.33	18.9	0.308
	Unterhalb	567'479 / 191'686	28.04.2009	0	3.0	0.44	0.06	7.7	0.062
ECUBLENS	Oberhalb	552'323 / 162'648	14.07.2009	4	3.8	0	0.01	0.95	0.047
	Auslauf	552'267 / 162'800	14.07.2009	11	12	0.25	0.44	49.9	0.663
	Unterhalb	552'186 / 162'936	14.07.2009	5	4.5	0.51	0.24	5.98	0.109
FRIBOURG	Oberhalb	578'791 / 184'541	17.12.2009	0	2.1	0.13	0.01	1.05	0.026
	Auslauf	578'980 / 184'640	17.12.2009	0	9.2	1.67	0.09	11.5	0.662
	Unterhalb	579'208 / 184'750	17.12.2009	0	2.1	<0.1	0.01	0.97	0.03
GROLLEY	Oberhalb	571'337 / 187'145	31.03.2009	0	3.0	0.16	0.04	5.51	0.06
GROLLET	Auslauf	571'331 / 187'215	31.03.2009	0	5.4	0.10	0.03	10.2	0.375
	Unterhalb	571'328 / 187'290	31.03.2009	0	3.2	<0.1	0.04	6.63	0.143
KERZERS	Oberhalb	580'476 / 202'628	14.07.2009	6	3.7	0.95	0.04	9.41	0.143
RENZERS	Auslauf					22.3	0.06	7.08	0.133
		580'453 / 202'637	14.07.2009	10	9.7				
LENTIONY	Unterhalb	580'308 / 202'761	14.07.2009	14	9.6	20.8	0.15	3.45	0.271
LENTIGNY	Oberhalb	566'338 / 178'723	24.03.2009	0	2.9	0.11	0.01	5.54	0.056
	Auslauf	566'317 / 178'780	24.03.2009	16	15	1.85	0.19	6.1	0.404
MADLY	Unterhalb	566'279 / 178'872	24.03.2009	2	4.8	0.41	0.05	5.52	0.101
MARLY	Oberhalb	576'135 / 180'934	17.12.2009	0	2.3	<0.1	0.01	0.83	0.017
	Auslauf	576'260 / 181'140	17.12.2009	3	15.8	6.03	0.2	10.5	0.661
	Unterhalb	576'513 / 18'373	17.12.2009	0	2.0	<0.1	0.01	0.8	0.016
MISERY	Oberhalb	570'693 / 189'617	31.03.2009	0	2.7	0	0.01	4.83	0.043
	Auslauf	570'750 / 189'663	31.03.2009	0	8.1	0.59	0.18	31.9	0.43
	Unterhalb	570'767 / 189'735	31.03.2009	0	2.7	0	0.02	5.04	0.048
MONTAGNY	Oberhalb	564'794 / 185'854	31.03.2009	0	2.9	0	0.01	4.48	0.023
	Auslauf	564'740 / 185'847	31.03.2009	0	6.7	0	0.06	31.5	0.238
	Unterhalb	564'652 / 185'873	31.03.2009	0	3.0	0	0.01	4.69	0.028
PENSIER	Oberhalb	577'243 / 188'074	17.12.2009	0	3.2	0.84	0.03	4.41	0.086
	Auslauf	577'282 / 188'333	17.12.2009	13	15	101	0.48	1.0	0.517
	Unterhalb	577'294 / 188'224	17.12.2009	0	2.4	0.26	0.02	1.28	0.041
POSIEUX	Oberhalb	575'748 / 179'974	28.04.2009	0	2.1	<0.1	0.01	1.65	0.008
	Auslauf	575'595 / 179'903	28.04.2009	7	15	4.36	1.71	32.4	0.459
	Unterhalb	575'990 / 179'678	28.04.2009	0	2.3	<0.1	0.01	1.63	0.014
ROMONT	Oberhalb	561'385 / 172'517	14.07.2009	7	2.7	<0.1	0.01	1.62	0.063
	Auslauf	561'457 / 172'546	14.07.2009	4	6.4	<0.1	0.05	16.7	0.888
	Unterhalb	561'587 / 172620	14.07.2009	5	3.5	0	0.02	4.95	0.247
TORNY	Oberhalb	564'759 / 180'282	24.03.2009	0	4.0	0.09	0.01	2.88	0.025
	Auslauf	564'800 / 180'300	24.03.2009	8	15	10.4	0.99	32.8	0.445
	Unterhalb	564'822 / 180'359	24.03.2009	0	3.8	0.13	0.01	3.05	0.027
VILLAREPOS	Oberhalb	572'679 / 193'539	31.03.2009	0	2.5	0	0.02	5.23	0.029
	Auslauf	572'691 / 193'606	31.03.2009	19	6.2	0.71	0.42	15.9	1.55

Mandat 1	Probe	Probe	Entnahmedatum	BSB5 [mg/L]	DOC [mg/L]	N-NH₄ [mg/L]	N-NO₂ [mg/L]	N-NO₃ [mg/L]	P tot [mg/L]
Wert GSchV Anhang 2				2 bis 4	1 bis 4	0.2 bis 0.4		5.6	
	Unterhalb	572'728 / 193'660	31.03.2009	0	2.6	0	0.02	5.3	0.072
VILLARS-SUR-GLANE	Oberhalb	575'064 / 181'736	26.11.2009	0	5.1	0.24	0.03	3.55	0.102
	Auslauf	575'154 / 181'454	26.11.2009	6	8.7	0.73	0.97	24.3	0.763
	Unterhalb vor Rückgabe	575'374 / 181'425	26.11.2009	0	5.1	0.25	0.09	4.62	0.144
	Unterhalb nach Rückgabe	575'892 / 181'548	26.11.2009	0	5.3	0.22	0.05	3.97	0.118
ZUMHOLZ	Oberhalb	589'621 / 178'565	28.04.2009	0	2.0	0	0	0.74	0.011
	Auslauf	589'651 / 178'670	28.04.2009	5	11	<0.1	0.1	27.8	0.664
	Unterhalb	589'650 / 178'781	28.04.2009	0	2.3	0	0	0.45	0.015

Bemerkung: Da Chloride nicht gemessen wurden, wurde Nitrit unter Berücksichtigung eines mittleren Wertes von Cl⁻ zwischen 10 und 20 mg/l bewertet

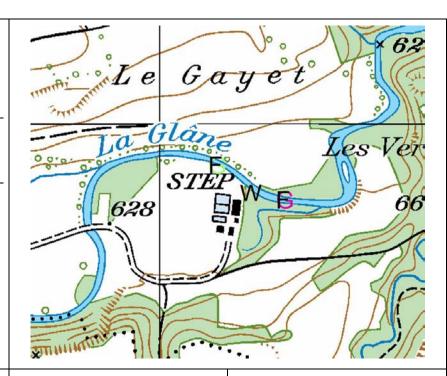
A4 Zusammenfassung nach ARA

Ergebnistabellen mit Grenzwerten der GSchV

- > ARA Autigny
- > ARA Broc
- > ARA Bussy
- > ARA Corserey
- > ARA Cottens
- > ARA Domdidier
- > ARA Ecublens
- > ARA Freiburg
- > ARA Grolley
- > ARA Kerzers
- > ARA Marly
- > ARA Misery
- > ARA Montagny
- > ARA Pensier
- > ARA Posieux
- > ARA Romont
- > ARA Torny
- > ARA Villarepos
- > ARA Villars-sur-Glâne
- > ARA Zumholz

Fliessgewässer: Glâne

Entnahmedatum: 14.07.2009


Phosphatfällung: ja Nitrifikation: ja

Denitrifikation: ja

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA			AUTIGNY	
Parameter	Einheit	Oberh.	Auslauf	Unterh.
BSB ₅	[mg/L]	6	7	4
DOC	[mg/L]	3.2	7.7	3.2
N-NH ₄	[mg/L]	0	3.51	0.24
N-NO ₂	[mg/L]	0.02	0.94	0.11
N-NO ₃	[mg/L]	2.38	25.7	4.55
Gesamt-P	[mg/L]	0.055	0.247	0.078

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Ammonium und Nitrit.

Interpretation der Ergebnisse gemäss GSchV

Die Ammonium- und Nitritwerte für den Auslauf überschreiten die Normen, was mit der Beeinträchtigung des Fliessgewässers unterhalb der Anlage übereinstimmt. Insgesamt ist die Wasserqualität gut bis mässig.

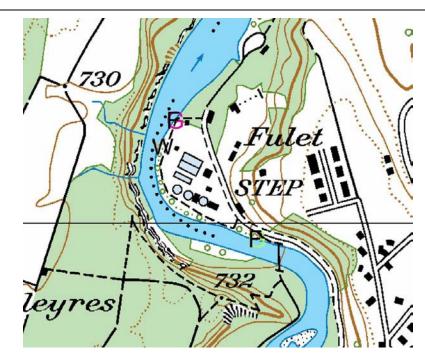
ARA Autigny

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		17.7	17.6		16.5
Snellen	cm		60	60	30	39
рН			7.9	8		7.8
Leitfähigkeit	μS/cm		556	604		1120
Gelöster Sauerstoff	mg/L		9.6	9.4		8
Gesättigter Sauerstoff	%		109	108		88
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	6	4	15	7
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	24
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	3.2	3.2	10	7.7
Schwebstoff (Schwebst.)	mg/L		5	7	15	10
Ammonium (N-NH ₄)	mg/L	0.4	0	0.24	2	3.51
Nitrit (N-NO ₂)	mg/L		0.02	0.11	0.3	0.94
Nitrat (N-NO ₃)	mg/L	5.6	2.38	4.55		25.7
Gesamtphosphor (P-tot)	mg/L		0.055	0.078	0.8	0.247
Cadmium (Cd)	μg/L	0.05	<0.5	<0.5		<0.5
Gesamtchrom (Cr)	μg/L	2	<1	<1		<1
Kupfer (Cu)	μg/L	2	1.7	2.0		10
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	<1	1.1		12
Blei (Pb)	μg/L	1	<1	<1		<1
Zink (Zn)	μg/L	5	5.0	6.6		258
Abflussmenge (Q)	m³/d					2538

Fliessgewässer: Saane

Entnahmedatum: 17.12.2009

Phosphatfällung: ja Nitrifikation: **nein** Denitrifikation: **nein**




oberhalb

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA			BROC	
Parameter	Einheit	Oberh.	Auslauf	Unterh.
BSB ₅	[mg/L]	0	0	0
DOC	[mg/L]	<1.5	10.1	1.9
N-NH ₄	[mg/L]	0.14	21.6	1.1
N-NO ₂	[mg/L]	0.01	0.42	0.04
N-NO ₃	[mg/L]	1.0	12.3	1.67
Gesamt-P	[mg/L]	0.011	0.469	0.032

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Ammonium und Nitrit.

Eine Auswirkung auf das Fliessgewässer wird daher festgestellt.

Kein Anforderungswert für Ammonium vorgeschrieben (Auslauf in einen See und Temperatur des Auslaufs < 10°C)

Interpretation der Ergebnisse gemäss GSchV

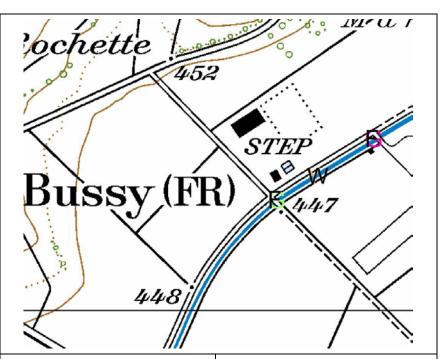
Die DOC- und Nitritwerte für den Auslass überschreiten die Normen, was mit der leichten Beeinträchtigung des Fliessgewässers unterhalb der Anlage übereinstimmt. Eine Nitrifikationsstufe könnte die Fliessgewässerqualität noch verbessern, obwohl diese insgesamt bereits gut ist.

ARA Broc

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		2.8	1.9		9.8
Snellen	cm		60	60	30	38
рН			8.2	8.2		7.8
Leitfähigkeit	μS/cm		525	563		1026
Gelöster Sauerstoff	mg/L		12.8	13.1		11.1
Gesättigter Sauerstoff	%		962	98		98
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	0
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	32
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	<1.5	1.9	10	10.1
Schwebstoff (Schwebst.)	mg/L		6	3	15	5
Ammonium (N-NH ₄)	mg/L	0.4	0.14	1.1		21.6
Nitrit (N-NO ₂)	mg/L		0.01	0.04	0.3	0.42
Nitrat (N-NO ₃)	mg/L	5.6	1	1.67		12.3
Gesamtphosphor (P-tot)	mg/L		0.011	0.032	0.8	0.469
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.2	1.1		2.3
Kupfer (Cu)	μg/L	2	0.7	1.0		5.9
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	1.4	1.3		5.1
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	16.0	21		33
Abflussmenge (Q)	m³/d					4205

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)

Fliessgewässer: Petite-Glâne


Entnahmedatum: 28.04.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: nein

Auslauf

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA			BUSSY	
Parameter	Einheit	Oberh.	Auslauf	Unterh.
BSB ₅	[mg/L]	0	6	1
DOC	[mg/L]	2.5	10	3.4
N-NH ₄	[mg/L]	0.16	0.91	0.16
N-NO ₂	[mg/L]	0.03	1.86	0.22
N-NO ₃	[mg/L]	6.89	24.3	8.57
Gesamt-P	[mg/L]	0.052	0.319	0.077

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Nitrit, Nitrat und Phosphor.

Interpretation der Ergebnisse gemäss GSchV

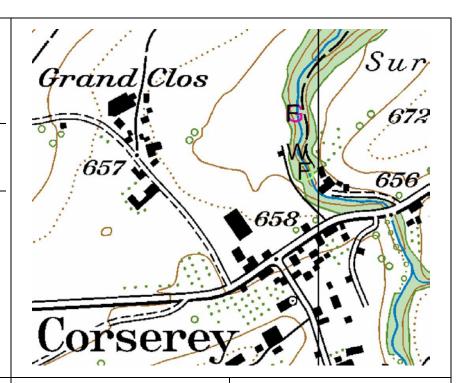
Lediglich der Nitritwert für den Auslauf überschreitet die Norm, was mit der Beeinträchtigung des Fliessgewässers unterhalb der Anlage übereinstimmt. Die ARA ist stark überlastet. Die Qualität des Fliessgewässers ist auch oberhalb des Auslaufs mässig, insbesondere in Bezug auf Schwermetalle (Gesamtchrom, Kupfer und Zink).

ARA Bussy

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		9.2	9.9		11.9
Snellen	cm		58	57	30	41
рН	-		8.3	8.4		7.8
Leitfähigkeit	μS/cm		628	665		966
Gelöster Sauerstoff	mg/L		10.8	10.1		10.5
Gesättigter Sauerstoff	- %		100	94		95
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	1	15	6
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	38
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.5	3.4	10	10
Schwebstoff (Schwebst.)	mg/L		11	12	15	9
Ammonium (N-NH ₄)	mg/L	0.4	0.16	0.16	2	0.91
Nitrit (N-NO ₂)	mg/L		0.03	0.22	0.3	1.86
Nitrat (N-NO ₃)	mg/L	5.6	6.89	8.57		24.3
Gesamtphosphor (P-tot)	mg/L		0.052	0.077	0.8	0.319
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	2.4	2.3		1.7
Kupfer (Cu)	μg/L	2	7.8	8.2		4.9
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	2.8	3		5.5
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	19.0	16		21
Abflussmenge (Q)	 m³/d					1864

Fliessgewässer: Bach

Lentigny


Entnahmedatum: 24.03.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: nein

Auslauf

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA			CORSEREY	
Parameter	Einheit	Oberh.	Auslauf	Unterh.
BSB ₅	[mg/L]	0	0	0
DOC	[mg/L]	4.0	10	3.8
N-NH ₄	[mg/L]	0.2	12.8	0.29
N-NO ₂	[mg/L]	0.03	1.7	0.05
N-NO ₃	[mg/L]	5.73	6.74	5.78
Gesamt-P	[mg/L]	0.045	0.253	0.052

Bemerkungen

Temperatur des Auslaufs < 10°C, keine Norm für Ammonium.

Abgesehen von einer leichten Beeinträchtigung durch Nitrit gute Qualität des Fliessgewässers oberhalb und unterhalb der Anlage.

Interpretation der Ergebnisse gemäss GSchV

Die Nitritwerte am Auslauf überschreiten die Norm, ohne eine signifikante Auswirkung auf die Qualität des Fliessgewässers hervorzurufen.

ARA Corserey

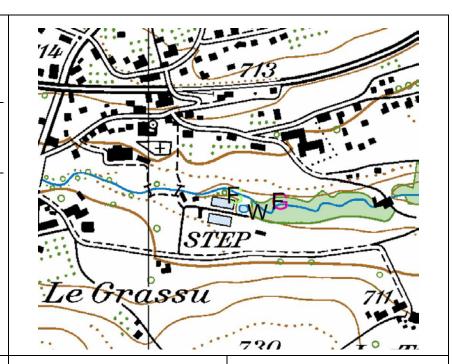
Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		4.9	4.8		8
Snellen	cm		35	34	30	28
рН			8.3	8.3		7.5
Leitfähigkeit	μS/cm		618	625		1250
Gelöster Sauerstoff	mg/L		11.7	11.6		6.2
Gesättigter Sauerstoff	%		99	98		60
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	0
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	29
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	4	3.8	10	10
Schwebstoff (Schwebst.)	mg/L		6	8	15	6
Ammonium (N-NH ₄)	mg/L	0.4	0.2	0.29		12.8
Nitrit (N-NO ₂)	mg/L		0.03	0.05	0.3	1.7
Nitrat (N-NO ₃)	mg/L	5.6	5.73	5.78		6.74
Gesamtphosphor (P-tot)	mg/L		0.045	0.052	0.8	0.253
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.4	1.2		6.2
Kupfer (Cu)	μg/L	2	2	2.1		27
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	1.2	0.7		9.9
Blei (Pb)	μg/L	1	<0.5	<0.5		0.7
Zink (Zn)	μg/L	5	7.4	7.5		61
Abflussmenge (Q)	 					60

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)

ARA: Cottens

Fliessgewässer: Bach Cottens

Entnahmedatum: 24.03.2009


Phosphatfällung: ja Nitrifikation: ja

Denitrifikation: nein

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		COTTENS				
Parameter	Einheit	Oberh.	Unterh.			
BSB₅	[mg/L]	0	30	0		
DOC	[mg/L]	4.0	12	4.3		
N-NH ₄	[mg/L]	0.18	14.6	0.96		
N-NO ₂	[mg/L]	0.01	0.21	0.03		
N-NO ₃	[mg/L]	4.26	0.47	4.08		
Gesamt-P	[mg/L]	0.057	1.11	0.122		

Bemerkungen

Temperatur des Auslaufs < 10°C, keine Anforderungswert für Ammonium.

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Ammonium, Nitrit und Phosphor.

Interpretation der Ergebnisse gemäss GSchV

Die Werte für BSB₅, CSB, DOC, Schwebstoffe und Gesamt-P am Auslass überschreiten die Anforderungswerte, was mit der Beeinträchtigung des Fliessgewässers unterhalb der Anlage übereinstimmt.

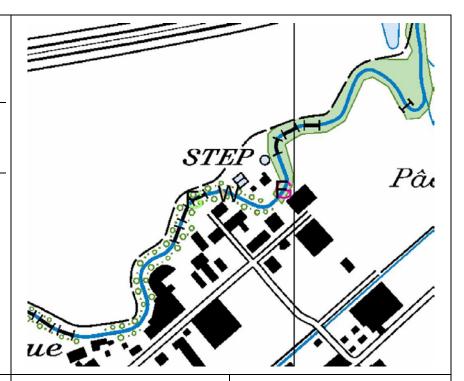
Bemerkung: Die ARA Cottens ist seit 2010 stillgelegt. Das Wasser wird in Autigny behandelt.

ARA Cottens

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		5.9	5.9		7.6
Snellen	cm		30	22	30	5
рН	-		8.2	8.2		7.6
Leitfähigkeit	μS/cm		596	626		1009
Gelöster Sauerstoff	mg/L		11.3	11.3		6.9
Gesättigter Sauerstoff	- %		98	99		63
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	30
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	93
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	4	4.3	10	12
Schwebstoff (Schwebst.)	mg/L		12	6	15	42
Ammonium (N-NH ₄)	mg/L	0.4	0.18	0.96		14.6
Nitrit (N-NO ₂)	mg/L		0.01	0.03	0.3	0.21
Nitrat (N-NO ₃)	mg/L	5.6	4.26	4.08		0.47
Gesamtphosphor (P-tot)	mg/L		0.057	0.122	0.8	1.11
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.6	1.6		5.3
Kupfer (Cu)	μg/L	2	4.1	4.5		2.8
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	1.1	0.9		3
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	15.0	12		10
Abflussmenge (Q)	 m ³ /d					828

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)

Fliessgewässer: Arbogne


Entnahmedatum: 28.04.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: nein

oberhalb

Auslauf

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		DOMDIDIER				
Parameter	Einheit	Oberh.	Unterh.			
BSB ₅	[mg/L]	0	3	0		
DOC	[mg/L]	2.8	9.5	3.0		
N-NH ₄	[mg/L]	<0.1	4.79	0.44		
N-NO ₂	[mg/L]	0.03	0.33	0.06		
N-NO ₃	[mg/L]	6.22	18.9	7.7		
Gesamt-P	[mg/L]	0.017	0.308	0.062		

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Ammonium, Nitrit und Phosphor

Interpretation der Ergebnisse gemäss GSchV

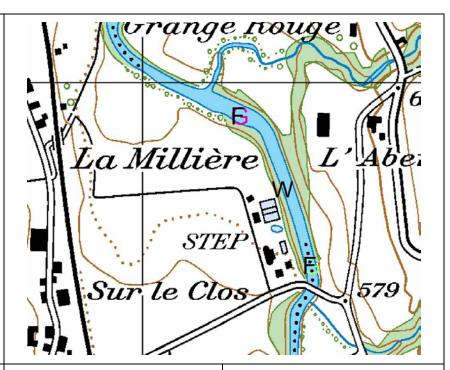
Die Ammonium- und Nitritwerte am Auslauf überschreiten die Normen, was mit der Beeinträchtigung des Fliessgewässers unterhalb der Anlage übereinstimmt.

Die Qualität des Gewässers ist gut bis mässig.

ARA Domdidier

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		10.1	10.2		10.4
Snellen	cm		60	60	30	44
рН			8.3	8.4		8
Leitfähigkeit	μS/cm		586	625		1042
Gelöster Sauerstoff	mg/L		9.9	9.7		8.4
Gesättigter Sauerstoff	-		93	91		83
Biochemischer Sauerstoffbedarf (BSB ₅)	 	2 bis 4	0	0	15	3
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	31
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.8	3	10	9.5
Schwebstoff (Schwebst.)	mg/L		7	8	15	9
Ammonium (N-NH ₄)	 	0.4	<0.1	0.44	2	4.79
Nitrit (N-NO ₂)	mg/L		0.03	0.06	0.3	0.33
Nitrat (N-NO ₃)	mg/L	5.6	6.22	7.7		18.9
Gesamtphosphor (P-tot)	mg/L		0.017	0.062	0.8	0.308
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.9	1.7		2.1
Kupfer (Cu)	μg/L	2	1.7	1.9		10
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	2.5	2.6		4.5
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	7.9	18		40
Abflussmenge (Q)	 					1935

Fliessgewässer: Broye


Entnahmedatum: 14.07.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: **nein**

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		ECUBLENS					
Parameter	Einheit	Oberh.	Unterh.				
BSB ₅	[mg/L]	4	11	5			
DOC	[mg/L]	3.8	12	4.5			
N-NH ₄	[mg/L]	0	0.25	0.51			
N-NO ₂	[mg/L]	0.01	0.44	0.24			
N-NO ₃	[mg/L]	0.95	49.9	5.98			
Gesamt-P	[mg/L]	0.047	0.663	0.109			

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Ammonium, Nitrit und Phosphor.

Interpretation der Ergebnisse gemäss GSchV

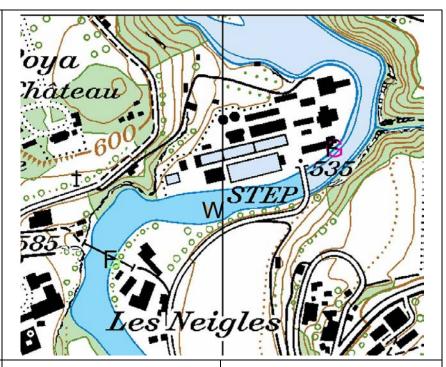
Die Werte für DOC, Schwebstoffe und Nitrite am Auslauf überschreiten die Normen, was mit der Beeinträchtigung des Fliessgewässers unterhalb der Anlage übereinstimmt.

Die Qualität des Fliessgewässers ist gut bis unbefriedigend.

ARA Ecublens

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		19.8	19.8		18.3
Snellen	cm		60	60	30	19
рН			8	7.8		7.4
Leitfähigkeit	μS/cm		458	544		1134
Gelöster Sauerstoff	mg/L		10.2	11.1		9.4
Gesättigter Sauerstoff	%		121	131		87
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	4	5	15	11
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	46
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	3.8	4.5	10	12
Schwebstoff (Schwebst.)	mg/L		7	8	15	16
Ammonium (N-NH ₄)	mg/L	0.4	0	0.51	2	0.25
Nitrit (N-NO ₂)	mg/L		0.01	0.24	0.3	0.44
Nitrat (N-NO ₃)	mg/L	5.6	0.95	5.98		49.9
Gesamtphosphor (P-tot)	mg/L		0.047	0.109	0.8	0.663
Cadmium (Cd)	μg/L	0.05	<0.5	<0.5		<0.5
Gesamtchrom (Cr)	μg/L	2	<1	<1		<1
Kupfer (Cu)	μg/L	2	4.6	5.6		7.9
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	<1	1		3.7
Blei (Pb)	μg/L	1	<1	<1		<1
Zink (Zn)	μg/L	5	5.3	22		26
Abflussmenge (Q)	m³/d					2882

Fliessgewässer: Saane


Entnahmedatum: 17.12.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: ja

Auslauf

unterhalb

Klassifizierung nach der MSK-Methode - Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		FREIBURG						
Parameter	Einheit	Oberh.	Auslauf	Unterh.				
BSB ₅	[mg/L]	0	0	0				
DOC	[mg/L]	2.1	9.2	2.1				
N-NH ₄	[mg/L]	0.13	1.67	<0.1				
N-NO ₂	[mg/L]	0.01	0.09	0.01				
N-NO ₃	[mg/L]	1.05	11.5	0.97				
Gesamt-P	[mg/L]	0.026	0.662	0.03				

Bemerkungen

Gute Qualität des Fliessgewässers oberhalb und unterhalb.

Interpretation der Ergebnisse gemäss GSchV

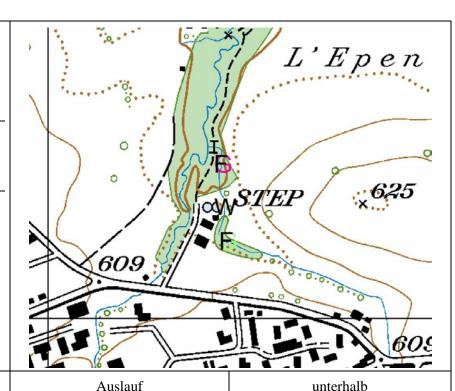
Die Werte des Auslaufs entsprechen den gesetzlichen Vorgaben.

Die Qualität des Fliessgewässers ist gut.

ARA Freiburg

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		5	5.1		14
Snellen			42	41	30	43
рН			8.2	8.3		8.1
Leitfähigkeit	μS/cm		419	418		1183
Gelöster Sauerstoff	mg/L		12.6	12.8		11
Gesättigter Sauerstoff	%		92	94		107
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	0
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	30
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.1	2.1	10	9.2
Schwebstoff (Schwebst.)	mg/L		12	13	15	11
Ammonium (N-NH ₄)	mg/L	0.4	0.13	<0.1	2	1.67
Nitrit (N-NO ₂)	mg/L		0.01	0.01	0.3	0.09
Nitrat (N-NO ₃)	mg/L	5.6	1.05	0.97		11.5
Gesamtphosphor (P-tot)	mg/L		0.026	0.03	0.8	0.662
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1	<0.5		2.6
Kupfer (Cu)	μg/L	2	1.1	0.9		6.1
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	2.3	0.7		5.9
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	16	13		25
Abflussmenge (Q)	m ³ /d					15290

Fliessgewässer: Bach Grolley


Entnahmedatum: 31.03.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: ja

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		GROLLEY						
Parameter	Einheit	Oberh.	Oberh. Auslauf Unt					
BSB ₅	[mg/L]	0	0	0				
DOC	[mg/L]	3.0	5.4	3.2				
N-NH ₄	[mg/L]	0.16	0	<0.1				
N-NO ₂	[mg/L]	0.04	0.03	0.04				
N-NO ₃	[mg/L]	5.51	10.2	6.63				
Gesamt-P	[mg/L]	0.06	0.375	0.143				

Bemerkungen

Temperatur des Auslaufs < 10°C, keine Anforderungswerte für Ammonium.

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Nitrat und Phosphor.

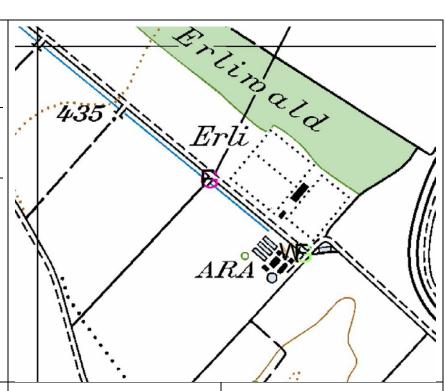
Interpretation der Ergebnisse gemäss GSchV

Alle Werte für den Auslauf entsprechen den gesetzlichen Vorgaben.

Lediglich der Nitratwert unterhalb des Auslaufs überschreitet den Anforderungswert. Die Auswirkung des Auslaufs der ARA auf das Fliessgewässer kann nicht die Ursache seiner Beeinträchtigung sein.

ARA Grolley

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		7	7.6		7.3
Snellen	cm		60	50	30	50
рН			8.1	8.2		8
Leitfähigkeit	μS/cm		691	732		845
Gelöster Sauerstoff	mg/L		11	10.5		10.1
Gesättigter Sauerstoff	%		97	94		89
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	0
Chemischer Sauerstoffbedarf (CSB)	 mg/L		<15	<15	60	19
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	3	3.2	10	5.4
Schwebstoff (Schwebst.)	mg/L		9	13	15	5
Ammonium (N-NH ₄)	mg/L	0.4	0.16	<0.1		0
Nitrit (N-NO ₂)	mg/L		0.04	0.04	0.3	0.03
Nitrat (N-NO ₃)	 mg/L	5.6	5.51	6.63		10.2
Gesamtphosphor (P-tot)	mg/L		0.06	0.143	0.8	0.375
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.8	2.2		4.1
Kupfer (Cu)	μg/L	2	1.9	2.8		3.2
Quecksilber (Hg)	μg/L	0.01	<0.05	<0.05		<0.05
Nickel (Ni)	μg/L	5	0.7	0.9		1.5
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	29	33		20
Abflussmenge (Q)	m³/d					473


Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs < 10°C)

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		KERZERS					
Parameter	Einheit	Oberh. Auslauf		Unterh.			
BSB ₅	[mg/L]	6	10	14			
DOC	[mg/L]	3.7	9.7	9.6			
N-NH ₄	[mg/L]	0.95	22.3	20.8			
N-NO ₂	[mg/L]	0.06	0.16	0.15			
N-NO ₃	[mg/L]	9.41	7.08	3.45			
Gesamt-P	[mg/L]	0.153	0.23	0.271			

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs für alle Parameter bis auf Nitrat.

Kein Anforderungswert für Ammonium vorgeschrieben (Auslauf in einen See)

Interpretation der Ergebnisse gemäss GSchV

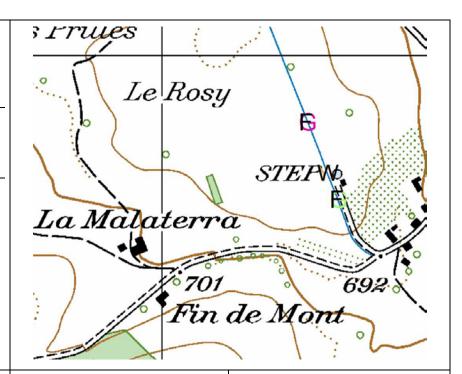
Die Werte des Fliessgewässers überschreiten die Anforderungswerte für BSB₅, DOC, Ammonium, Nitrate (nur oberhalb), Kupfer, Nickel und Zink. Die Qualität des Fliessgewässers ist insgesamt schlecht.

ARA Kerzers

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		16.4	18.4		18.6
Snellen			60	60	30	25
рН			7.8	7.6		7.7
Leitfähigkeit	μS/cm		761	1085		1237
Gelöster Sauerstoff	mg/L		8.2	4.7		7.1
Gesättigter Sauerstoff	- %		90	53		74
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	6	14	15	10
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	36	60	34
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	3.7	9.6	10	9.7
Schwebstoff (Schwebst.)	mg/L		10	22	15	14
Ammonium (N-NH ₄)	mg/L	0.4	0.95	20.8		22.3
Nitrit (N-NO ₂)	mg/L		0.06	0.15	0.3	0.16
Nitrat (N-NO₃)	mg/L	5.6	9.41	3.45		7.08
Gesamtphosphor (P-tot)	mg/L		0.153	0.271	0.8	0.23
Cadmium (Cd)	μg/L	0.05	<0.5	<0.5		<0.5
Gesamtchrom (Cr)	μg/L	2	<1	<1		<1
Kupfer (Cu)	μg/L	2	1.9	4.1		4.5
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	2	7.3		7.2
Blei (Pb)	μg/L	1	<1	<1		<1
Zink (Zn)	μg/L	5	8.8	20		51
Abflussmenge (Q)	 m³/d					3260

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs < 10°C)

Fliessgewässer: Bach Lentigny


Entnahmedatum: 24.03.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: **nein**

__

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

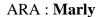
ARA		LENTIGNY					
Parameter	Einheit	Oberh.	Unterh.				
BSB ₅	[mg/L]	0	16	2			
DOC	[mg/L]	2.9	15	4.8			
N-NH ₄	[mg/L]	0.11	1.85	0.41			
N-NO ₂	[mg/L]	0.01	0.19	0.05			
N-NO ₃	[mg/L]	5.54	6.1	5.52			
Gesamt-P	[mg/L]	0.056		0.101			

Bemerkungen

Temperatur des Auslaufs < 10°C, kein Anforderungswert für Ammonium.

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei DOC, Ammonium, Nitraten und Phosphor.

Interpretation der Ergebnisse gemäss GSchV

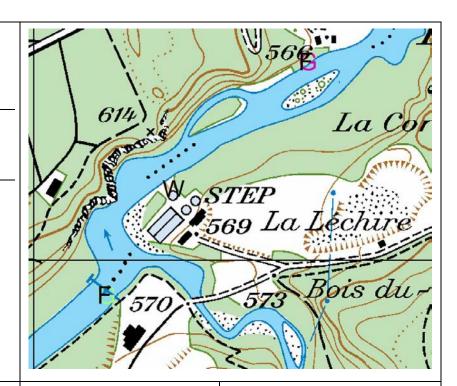

Nur die BSB₅- und DOC-Werte für den Auslauf überschreiten die Anforderungswerte. Bei Stickstoff liegt keine Überschreitung vor.

Die Werte des Fliessgewässers überschreiten die Anforderungswerte unterhalb der Anlage bei DOC und Ammonium. Die Qualität des Fliessgewässers ist insgesamt gut bis mässig.

ARA Lentigny

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		5.6	5.5		7.5
Snellen	cm		40	22	30	18
рН			8	8.1		8.2
Leitfähigkeit	μS/cm		647	665		761
Gelöster Sauerstoff	mg/L		10.8	10.3		10.2
Gesättigter Sauerstoff	%		93	89		92
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	2	15	16
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	19	60	56
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.9	4.8	10	15
Schwebstoff (Schwebst.)	mg/L		8	12	15	10
Ammonium (N-NH ₄)	mg/L	0.4	0.11	0.41		1.85
Nitrit (N-NO ₂)	mg/L		0.01	0.05	0.3	0.19
Nitrat (N-NO ₃)	mg/L	5.6	5.54	5.52		6.1
Gesamtphosphor (P-tot)	mg/L		0.056	0.101	0.8	
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.8	1.6		3.4
Kupfer (Cu)	μg/L	2	2.1	2.0		3.7
Quecksilber (Hg)	μg/L	0.01	<0.05	<0.05		
Nickel (Ni)	μg/L	5	1	1.2		2.9
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	18	17		15
Abflussmenge (Q)	m³/d					382

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)


Fliessgewässer: Saane

Entnahmedatum: 17.12.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: ja

oberhalb

Auslauf

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

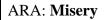
(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		MARLY					
Parameter	Einheit	Oberh.	Auslauf	Unterh.			
BSB ₅	[mg/L]	0	3	0			
DOC	[mg/L]	2.3	15.8	2.0			
N-NH ₄	[mg/L]	<0.1	6.03	<0.1			
N-NO ₂	[mg/L]	0.01	0.2	0.01			
N-NO ₃	[mg/L]	0.83	10.5	0.8			
Gesamt-P	[mg/L]	0.017	0.661	0.016			

Bemerkungen

Temperatur des Auslaufs ≤ 10°C, keine Anforderungswert für Ammonium.

Gute Qualität des Fliessgewässers oberhalb und unterhalb.


Interpretation der Ergebnisse gemäss GSchV

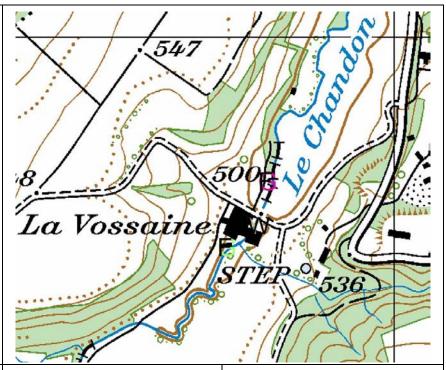
Die Werte für DOC, Schwebstoffe und Ammonium am Auslass überschreiten die Anforderungswerte. Dank des Verdünnungseffekts haben sie jedoch keine Auswirkung auf das Fliessgewässer. Die Qualität des Fliessgewässers ist gut.

ARA Marly

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		5.5	6		10
Snellen	cm		42	60	30	32
рН			8	8.1		7.4
Leitfähigkeit	μS/cm		417	405		993
Gelöster Sauerstoff	mg/L		12.9	11.9		9.5
Gesättigter Sauerstoff	%		95	88		81
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	3
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	52
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.3	2	10	15.8
Schwebstoff (Schwebst.)	mg/L		15	5	15	16
Ammonium (N-NH ₄)	mg/L	0.4	<0.1	<0.1		6.03
Nitrit (N-NO ₂)	mg/L		0.01	0.01	0.3	0.2
Nitrat (N-NO ₃)	mg/L	5.6	0.83	0.8		10.5
Gesamtphosphor (P-tot)	mg/L		0.017	0.016	0.8	0.661
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		0.2
Gesamtchrom (Cr)	μg/L	2	0.8	0.8		2.3
Kupfer (Cu)	μg/L	2	1.1	1.3		8.3
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	1.4	1.2		4.2
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	38	22		115
Abflussmenge (Q)	 m³/d					7344

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $\leq 10^{\circ} C$)

Fliessgewässer: Chandon


Entnahmedatum: 31.03.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: nein

oberhalb

Auslauf

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		MISERY					
Parameter	Einheit	Oberh.	Auslauf	Unterh.			
BSB ₅	[mg/L]	0	0	0			
DOC	[mg/L]	2.7	8.1	2.7			
N-NH ₄	[mg/L]	0	0.59	0			
N-NO ₂	[mg/L]	0.01	0.18	0.02			
N-NO ₃	[mg/L]	4.83	31.9	5.04			
Gesamt-P	[mg/L]	0.043	0.43	0.048			

Bemerkungen

Temperatur des Auslaufs < 10°C, kein Anforderungswert für Ammonium.

Gute Qualität des Fliessgewässers oberhalb und unterhalb.

Interpretation der Ergebnisse gemäss GSchV

Alle Werte für den Auslauf entsprechen den gesetzlichen Vorgaben.

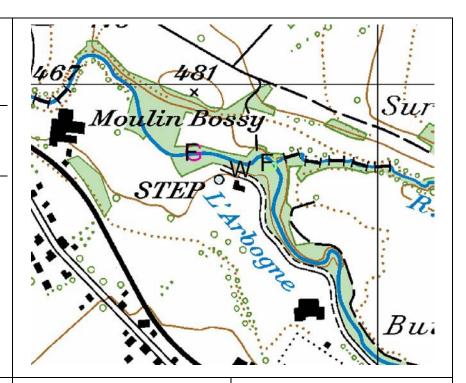
Die Qualität des Fliessgewässers ist gut.

ARA Misery

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		4.9	5.4		8.5
Snellen	cm		60	60	30	60
pH			8.3	8.3		7.9
Leitfähigkeit	μS/cm		646	649		1132
Gelöster Sauerstoff	mg/L		12.5	12.3		10.5
Gesättigter Sauerstoff	- <u>%</u>		103	103		91
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	0
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	28
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.7	2.7	10	8.1
Schwebstoff (Schwebst.)	mg/L		6	4	15	6
Ammonium (N-NH ₄)	mg/L	0.4	0	0		0.59
Nitrit (N-NO ₂)	mg/L		0.01	0.02	0.3	0.18
Nitrat (N-NO ₃)	mg/L	5.6	4.83	5.04		31.9
Gesamtphosphor (P-tot)	mg/L		0.043	0.048	0.8	0.43
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.4	1.3		6.9
Kupfer (Cu)	μg/L	2	1.6	2.1		9.6
Quecksilber (Hg)	μg/L	0.01	0	<0.05		0
Nickel (Ni)	μg/L	5	0.7	0.5		8.8
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	24	25		21
Abflussmenge (Q)	 m³/d					75

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)

Fliessgewässer: Arbogne


Entnahmedatum: 31.03.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: **nein**

untorholh

oberhalb

Auslauf

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

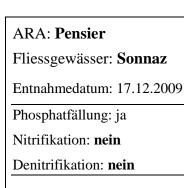
ARA		MONTAGNY					
Parameter	Einheit	Oberh.	Unterh.				
BSB ₅	[mg/L]	0	0	0			
DOC	[mg/L]	2.9	6.7	3.0			
N-NH ₄	[mg/L]	0	0	0			
N-NO ₂	[mg/L]	0.01	0.06	0.01			
N-NO ₃	[mg/L]	4.48	31.5	4.69			
Gesamt-P	[mg/L]	0.023	0.238	0.028			

Bemerkungen

Temperatur des Auslaufs < 10°C, kein Anforderungswert für Ammonium.

Gute Qualität des Fliessgewässers oberhalb und unterhalb.

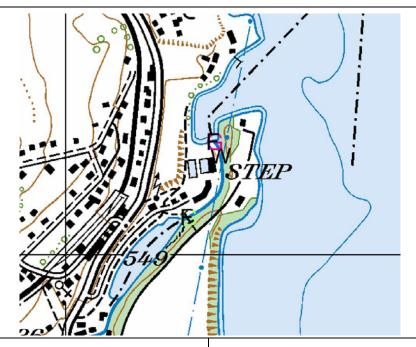
Interpretation der Ergebnisse gemäss GSchV


Alle Werte für den Auslauf entsprechen den gesetzlichen Vorgaben.

Die Qualität des Fliessgewässers ist gut.

ARA Montagny

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		5.2	5.4		9.5
Snellen	cm		60	60	30	52
рН			8.4	8.4		7.8
Leitfähigkeit	μS/cm		571	578		959
Gelöster Sauerstoff	mg/L		12.1	12.3		9.3
Gesättigter Sauerstoff	%		100	102		75
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	0
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	27
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.9	3	10	6.7
Schwebstoff (Schwebst.)	mg/L		6	7	15	11
Ammonium (N-NH ₄)	mg/L	0.4	0	0		0
Nitrit (N-NO ₂)	mg/L		0.01	0.01	0.3	0.06
Nitrat (N-NO₃)	mg/L	5.6	4.48	4.69		31.5
Gesamtphosphor (P-tot)	mg/L		0.023	0.028	0.8	0.238
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1	1		6.5
Kupfer (Cu)	μg/L	2	1.8	1.6		8.2
Quecksilber (Hg)	μg/L	0.01	0	<0.05		<0.05
Nickel (Ni)	μg/L	5	0.6	<0.5		2.1
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	16	13		26
Abflussmenge (Q)	 m³/d					472


Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		PENSIER					
Parameter	Einheit	Oberh.	Unterh.				
BSB ₅	[mg/L]	0	13	0			
DOC	[mg/L]	3.2	15	2.4			
N-NH ₄	[mg/L]	0.84	101	0.26			
N-NO ₂	[mg/L]	0.03	0.48	0.02			
N-NO ₃	[mg/L]	4.41	1.0	1.28			
Gesamt-P	[mg/L]	0.086	0.517	0.041			

Bemerkungen

Die Qualität des Fliessgewässers verbessert sich unterhalb des Auslaufs.

Kein Anforderungswert für Ammonium vorgeschrieben (Auslauf in einen See)

Interpretation der Ergebnisse gemäss GSchV

Die CSB-, DOC-, Ammonium- und Nitritwerte für den Auslauf überschreiten die Anforderungswerte, ohne sich jedoch auf das Fliessgewässer auszuwirken.

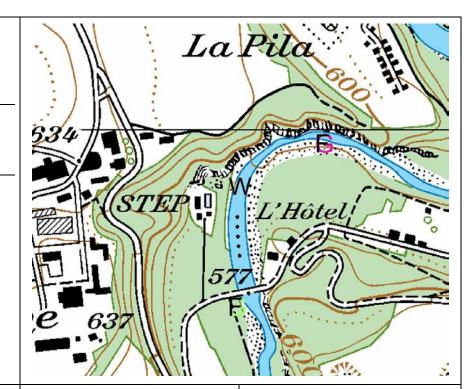
Die Qualität des Fliessgewässers verbessert sich zwischen dem Bereich oberhalb und unterhalb der Anlage trotzt einer mässigen Qualität des Auslaufs. Der See hat wohl eine verdünnende Wirkung.

ARA Pensier

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		2	4.5		12.9
Snellen	cm		60	21	30	15
рН			8.3	8.2		8.2
Leitfähigkeit	μS/cm		669	464		2130
Gelöster Sauerstoff	mg/L		12.9	13.4		8.9
Gesättigter Sauerstoff	- %		95	99		80
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	13
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	65
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	3.2	2.4	10	15
Schwebstoff (Schwebst.)	mg/L		4	24	15	13
Ammonium (N-NH ₄)	mg/L	0.4	0.84	0.26		101
Nitrit (N-NO ₂)	mg/L		0.03	0.02	0.3	0.48
Nitrat (N-NO₃)	mg/L	5.6	4.41	1.28		1
Gesamtphosphor (P-tot)	mg/L		0.086	0.041	0.8	0.517
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	2.9	1.1		5.5
Kupfer (Cu)	μg/L	2	2	1.3		9.9
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	9.5	1.6		24
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	18.0	29		48
Abflussmenge (Q)	 m³/d					7156

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Auslauf in einen See)

Fliessgewässer: Saane


Entnahmedatum: 28.04.2009

Phosphatfällung: ja Nitrifikation: **nein** Denitrifikation: **nein**

Auslauf

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		POSIEUX						
Parameter	Einheit	Oberh.	Unterh.					
BSB ₅	[mg/L]	0	7	0				
DOC	[mg/L]	2.1	15	2.3				
N-NH ₄	[mg/L]	<0.1	4.36	<0.1				
N-NO ₂	[mg/L]	0.01	1.71	0.01				
N-NO ₃	[mg/L]	1.65	32.4	1.63				
Gesamt-P	[mg/L]	0.008	0.459	0.014				

Bemerkungen

Kein Anforderungswert für Ammonium vorgeschrieben

Gute Qualität oberhalb und unterhalb des Auslaufs

Interpretation der Ergebnisse gemäss GSchV

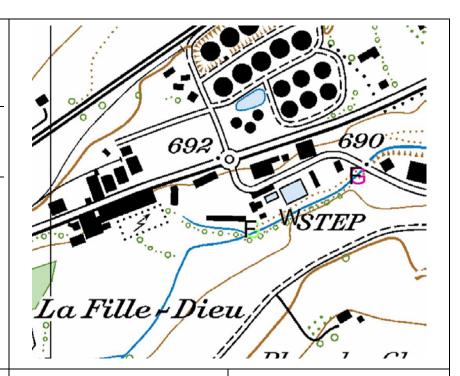
Die DOC-, Ammonium- und Nitritwerte für den Auslauf überschreiten die Anforderungswerte. Dank des Verdünnungseffekts wirken sie sich jedoch nicht auf das Fliessgewässer aus. Die Qualität des Fliessgewässers ist gut.

ARA Posieux

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		7.7	7		12.2
Snellen	cm		60	60	30	23
рН			8.3	8.4		7.8
Leitfähigkeit	μS/cm		466	466		1851
Gelöster Sauerstoff	mg/L		10.3	10.6		7.6
Gesättigter Sauerstoff	- %		93	94		78
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	7
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	53
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.1	2.3	10	15
Schwebstoff (Schwebst.)	mg/L		6	5	15	15
Ammonium (N-NH ₄)	mg/L	0.4	<0.1	<0.1		4.36
Nitrit (N-NO ₂)	mg/L		0.01	0.01	0.3	1.71
Nitrat (N-NO ₃)	mg/L	5.6	1.65	1.63		32.4
Gesamtphosphor (P-tot)	mg/L		0.008	0.014	0.8	0.459
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	0.8	1.1		2.9
Kupfer (Cu)	μg/L	2	1.2	1.1		13
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	2.3	2.5		70
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	8.4	10		49
Abflussmenge (Q)	 m³/d					718

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben

Fliessgewässer: Glâne


Entnahmedatum: 14.07.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: ja

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		ROMONT						
Parameter	Einheit	Oberh. Auslauf Unterl						
BSB ₅	[mg/L]	7	4	5				
DOC	[mg/L]	2.7	6.4	3.5				
N-NH ₄	[mg/L]	<0.1	<0.1	0				
N-NO ₂	[mg/L]	0.01	0.05	0.02				
N-NO ₃	[mg/L]	1.62	16.7	4.95				
Gesamt-P	[mg/L]	0.063	0.888	0.247				

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs in Bezug auf Phosphor.

Für den Rest ist sie dagegen stabil bzw. verbessert sich sogar.

Interpretation der Ergebnisse gemäss GSchV

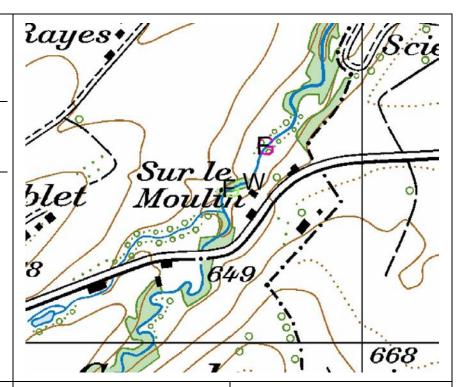
Lediglich der Phosphorwert am Auslauf überschreitet den Anforderungswert, was der Beeinträchtigung des Fliessgewässers unterhalb der Anlage für diesen Parameter entspricht.

Die Qualität des Fliessgewässers ist gut.

ARA Romont

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		18.6	18.9		17.8
Snellen	cm		60	60	30	44
рН			7.8	7.7		7.7
Leitfähigkeit	μS/cm		536	665		1057
Gelöster Sauerstoff	mg/L		8	7.1		11
Gesättigter Sauerstoff	%		92	84		95
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	7	5	15	4
Chemischer Sauerstoffbedarf (CSB)	mg/L		17	<15	60	20
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.7	3.5	10	6.4
Schwebstoff (Schwebst.)	mg/L		21	11	15	13
Ammonium (N-NH ₄)	mg/L	0.4	<0.1	0	2	<0.1
Nitrit (N-NO ₂)	mg/L		0.01	0.02	0.3	0.05
Nitrat (N-NO ₃)	 mg/L	5.6	1.62	4.95		16.7
Gesamtphosphor (P-tot)	mg/L		0.063	0.247	0.8	0.888
Cadmium (Cd)	μg/L	0.05	<0.5	<0.5		<0.5
Gesamtchrom (Cr)	μg/L	2	<1	<1		<1
Kupfer (Cu)	μg/L	2	3.1	4.1		4.5
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	<1	1.9		6
Blei (Pb)	μg/L	1	<1	<1		<1
Zink (Zn)	μg/L	5	5.1	9.8		21
Abflussmenge (Q)	 					2782

Fliessgewässer: Arbogne


Entnahmedatum: 24.03.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: **nein**

Juntanhalh

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		TORNY						
Parameter	Einheit	Oberh. Auslauf		Unterh.				
BSB ₅	[mg/L]	0	8	0				
DOC	[mg/L]	4.0	15	3.8				
N-NH ₄	[mg/L]	0.09	10.4	0.13				
N-NO ₂	[mg/L]	0.01	0.99	0.01				
N-NO ₃	[mg/L]	2.88	32.8	3.05				
Gesamt-P	[mg/L]	0.025	0.445	0.027				

Bemerkungen

Temperatur des Auslaufs < 10°C, kein Anforderungswert für Ammonium.

Gute Qualität des Fliessgewässers oberhalb und unterhalb.

Interpretation der Ergebnisse gemäss GSchV

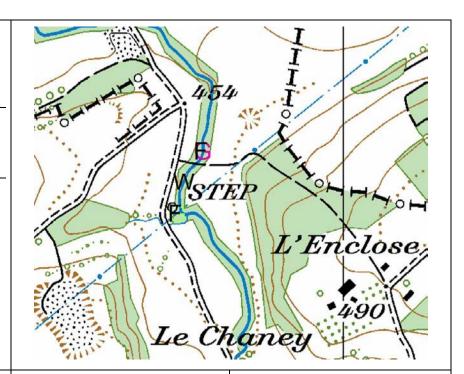
Die DOC- und Nitritwerte für den Auslauf überschreiten die Anforderungswerte. Sicherlich aufgrund des Verdünnungseffekts wirken sie sich jedoch nicht auf die Qualität des Fliessgewässers aus. Die Qualität des Fliessgewässers ist gut.

ARA Torny

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		4.1	4		7
Snellen	cm		41	35	30	16
рН			8.5	8.4		7.8
Leitfähigkeit	μS/cm		542	544		1198
Gelöster Sauerstoff	mg/L		12.1	12.1		6.7
Gesättigter Sauerstoff	%		100	100		60
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	8
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	49
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	4	3.8	10	15
Schwebstoff (Schwebst.)	mg/L		4	6	15	14
Ammonium (N-NH ₄)	mg/L	0.4	0.09	0.13		10.4
Nitrit (N-NO ₂)	mg/L		0.01	0.01	0.3	0.99
Nitrat (N-NO ₃)	mg/L	5.6	2.88	3.05		32.8
Gesamtphosphor (P-tot)	mg/L		0.025	0.027	0.8	0.445
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1	1.2		6.1
Kupfer (Cu)	μg/L	2	1.9	2.1		5.8
Quecksilber (Hg)	μg/L	0.01	0	<0.05		<0.05
Nickel (Ni)	μg/L	5	1.2	0.7		9.5
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	11	7.5		68
Abflussmenge (Q)	m³/d					121

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)

Fliessgewässer: Chandon


Entnahmedatum: 31.03.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: **nein**

unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

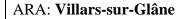
(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		VILLAREPOS					
Parameter	Einheit	Oberh.	Oberh. Auslauf				
BSB ₅	[mg/L]	0	19	0			
DOC	[mg/L]	2.5	6.2	2.6			
N-NH ₄	[mg/L]	0	0.71	0			
N-NO ₂	[mg/L]	0.02	0.42	0.02			
N-NO ₃	[mg/L]	5.23	15.9	5.3			
Gesamt-P	[mg/L]	0.029	1.55	0.072			

Bemerkungen

Temperatur des Auslaufs < 10°C, kein Anforderungswert für Ammonium.

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs ausschliesslich in Bezug auf Phosphor.


Interpretation der Ergebnisse gemäss GSchV

Die Werte für BSB₅, CSB, Schwebstoffe, Nitrit und Phosphor am Auslauf überschreiten die Anforderungswerte, aber im Fliessgewässer, dessen Qualität gut ist, wird lediglich die Auswirkung des Phosphors festgestellt.

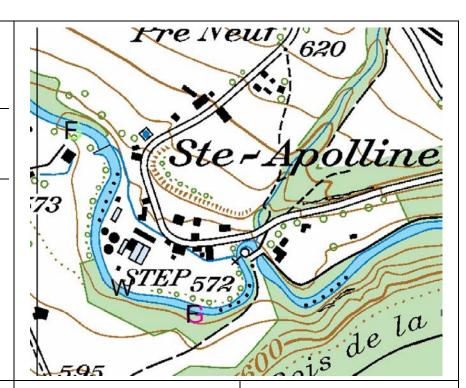
ARA Villarepos

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		6	5.3		8.9
Snellen	cm		60	60	30	7
pH			8.4	8.4		7.8
Leitfähigkeit	μS/cm		632	634		857
Gelöster Sauerstoff	mg/L		12.3	12.3		7
Gesättigter Sauerstoff	- %		103	102		60
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	19
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	63
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2.5	2.6	10	6.2
Schwebstoff (Schwebst.)	mg/L		6	6	15	57
Ammonium (N-NH ₄)	mg/L	0.4	0	0		0.71
Nitrit (N-NO ₂)	mg/L		0.02	0.02	0.3	0.42
Nitrat (N-NO ₃)	mg/L	5.6	5.23	5.3		15.9
Gesamtphosphor (P-tot)	mg/L		0.029	0.072	0.8	1.55
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.3	1.3		4.8
Kupfer (Cu)	μg/L	2	1.5	2.0		2.1
Quecksilber (Hg)	μg/L	0.01	<0.05	0		<0.05
Nickel (Ni)	μg/L	5	<0.5	0.5		3.6
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	16	21		11
Abflussmenge (Q)	m ³ /d					536

Bemerkung: kein Anforderungswert für Ammonium vorgeschrieben (Temperatur des Auslaufs $< 10^{\circ} C$)

Fliessgewässer: Glâne

Entnahmedatum: 26.11.2009


Phosphatfällung: ja Nitrifikation: ja

Denitrifikation: nein

oberhalb Auslauf unterhalb

Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		VILLARS-SUR-GLANE						
Parameter	Einheit	Oberh.	Auslauf	Unterh. vor Rückgabe	Oberh. vor Rückgabe			
BSB ₅	[mg/L]	0	6	0	0			
DOC	[mg/L]	5.1	8.7	5.1	5.3			
N-NH ₄	[mg/L]	0.24	0.73	0.25	0.22			
N-NO ₂	[mg/L]	0.03	0.97	0.09	0.05			
N-NO ₃	[mg/L]	3.55	24.3	4.62	3.97			
Gesamt-P	[mg/L]	0.102	0.763	0.144	0.118			

Bemerkungen

Die Qualität des Fliessgewässers verschlechtert sich unterhalb des Auslaufs, insbesondere bei Nitrat und Phosphor.

Diese Parameter verbessern sich infolge der Rückgabe der Wasserentnahme durch den Verdünnungseffekt.

Trotzdem wird eine Auswirkung auf das Fliessgewässer festgestellt.

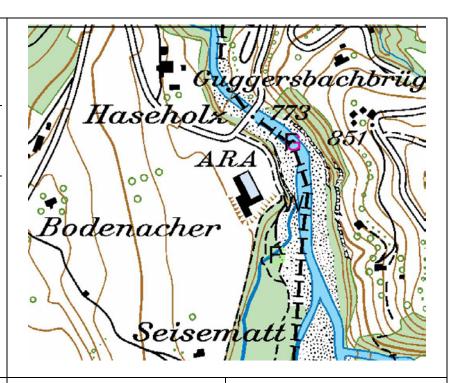
Interpretation der Ergebnisse gemäss GSchV

Lediglich der Nitritwert für den Auslauf überschreitet die Anforderungswerte. Die Qualität des Fliessgewässers ist mässig.

ARA Villars-sur-Glâne

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb vor Rückgabe	Unterhalb nach Rückgabe	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur			8.2	8.5	8.1		15
Snellen	cm		54	51	55	30	34
рН			8.3	8.3	8.3		7.7
Leitfähigkeit	μS/cm		523	543	532		890
Gelöster Sauerstoff	mg/L	-	11.1	10.9	10.7		9.1
Gesättigter Sauerstoff	%		102	100	98		82
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	0	15	6
Chemischer Sauerstoffbedarf (CSB)	mg/L		20	19	20	60	38
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	5.1	5.1	5.3	10	8.7
Schwebstoff (Schwebst.)	mg/L		9	9	6	15	11
Ammonium (N-NH ₄)	mg/L	0.4	0.24	0.25	0.22	2	0.73
Nitrit (N-NO ₂)	mg/L		0.03	0.09	0.05	0.3	0.97
Nitrat (N-NO₃)	mg/L	5.6	3.55	4.62	3.97		24.3
Gesamtphosphor (P-tot)	mg/L		0.102	0.144	0.118	0.8	0.763
Cadmium (Cd)	μg/L	0.05	<0.1	0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	1.5	1	1.3		3.2
Kupfer (Cu)	μg/L	2	4.1	3.5	5.5		5.3
Quecksilber (Hg)	μg/L	0.01	nd	nd	nd		nd
Nickel (Ni)	μg/L	5	1	0.7	1.4		5.9
Blei (Pb)	μg/L	1	<0.5	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	20	25	38		30
Abflussmenge (Q)	L/s	· ——	1530	1170	2470		60

Fliessgewässer: Sense

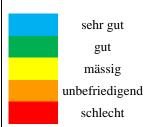

Entnahmedatum: 28.04.2009

Phosphatfällung: ja Nitrifikation: ja Denitrifikation: **nein**

oberhalb

Auslauf

unterhalb


Klassifizierung nach der MSK-Methode – Chemie und Nährstoffe

(die in Rot dargestellten Werte für den Auslauf überschreiten die Anforderungswerte der GSchV)

ARA		ZUMHOLZ				
Parameter	Einheit	Oberh.	Auslauf	Unterh.		
BSB ₅	[mg/L]	0	5	0		
DOC	[mg/L]	2.0	11	2.3		
N-NH ₄	[mg/L]	0	<0.1	0		
N-NO ₂	[mg/L]	0	0.1	0		
N-NO ₃	[mg/L]	0.74	27.8	0.45		
Gesamt-P	[mg/L]	0.011	0.664	0.015		

Bemerkungen

Gute Qualität des Fliessgewässers oberhalb und unterhalb.

Interpretation der Ergebnisse gemäss GSchV

Die Werte für DOC und Schwebstoffe am Auslass überschreiten die Anforderungswerte. Aufgrund des Verdünnungseffekts wirken sie sich jedoch nicht auf das Fliessgewässer aus. Die Qualität des Fliessgewässers ist gut.

ARA Zumholz

Parameter	Einheit	Wert GSchV Anhang 2	Oberhalb	Unterhalb	Wert der GSchV Anhang 3	Auslauf
Wassertemperatur	°C		7.8	7.8		10
Snellen	cm		50	39	30	18
рН			8.2	8.4		7.6
Leitfähigkeit	μS/cm		412	366		764
Gelöster Sauerstoff	mg/L		10.5	10.5		8.8
Gesättigter Sauerstoff	%		97	98		86
Biochemischer Sauerstoffbedarf (BSB ₅)	mg/L	2 bis 4	0	0	15	5
Chemischer Sauerstoffbedarf (CSB)	mg/L		<15	<15	60	43
Gelöster organischer Kohlenstoff (DOC)	mg/L	1 bis 4	2	2.3	10	11
Schwebstoff (Schwebst.)	mg/L		12	14	15	16
Ammonium (N-NH ₄)	mg/L	0.4	0	0	2	<0.1
Nitrit (N-NO ₂)	mg/L		0	0	0.3	0.1
Nitrat (N-NO ₃)	mg/L	5.6	0.74	0.45		27.8
Gesamtphosphor (P-tot)	mg/L		0.011	0.015	0.8	0.664
Cadmium (Cd)	μg/L	0.05	<0.1	<0.1		<0.1
Gesamtchrom (Cr)	μg/L	2	0.6	<0.5		1
Kupfer (Cu)	μg/L	2	1.1	1.1		3.6
Quecksilber (Hg)	μg/L	0.01	0	0		0
Nickel (Ni)	μg/L	5	2	1.8		4.6
Blei (Pb)	μg/L	1	<0.5	<0.5		<0.5
Zink (Zn)	μg/L	5	14	11		21
Abflussmenge (Q)						2188

A5 Überblick der Auswirkung der Ausläufe auf die Fliessgewässer

ARA	Fliessgewässer	Flie	ssgewässer	Auslauf		
		Auswirkung	Parameter	Überschreitung GSchV	Parameter	
AUTIGNY	Glâne	ja	Stickstoff und Phosphor	ja	Stickstoff	
BROC	Saane	ja	Stickstoff	ja	Stickstoff und DOC ¹	
BUSSY	Petite-Glâne	ja	Stickstoff und Phosphor	ja	Stickstoff	
CORSEREY	Bach Lentigny	nein		ja	Stickstoff	
COTTENS	Bach Cottens	ja	Stickstoff und Phosphor	ja	Phosphor, DOC und GUS ²	
DOMDIDIER	Arbogne	ja	Stickstoff	ja	Stickstoff	
ECUBLENS	Broye	ja	Stickstoff, Phosphor und DOC	ja	Stickstoff DOC und GUS	
FRIBOURG	Saane	nein		nein		
GROLLEY	Bach Grolley	ja	Stickstoff und Phosphor	nein		
KERZERS	Erligraben	ja	Stickstoff, Phosphor und DOC	ja	Stickstoff	
LENTIGNY	Bach Lentigny	ja	Stickstoff, Phosphor und DOC	ja	DOC	
MARLY	Saane	nein		ja	DOC und GUS	
MISERY	Chandon	nein		nein		
MONTAGNY	Arbogne	nein		nein		
PENSIER	Sonnaz	nein		ja	Stickstoff und DOC	
POSIEUX	Saane	nein		ja	Stickstoff und DOC	
ROMONT	Glâne	ja	Phosphor	ja	Phosphor	
TORNY	Arbogne	nein		ja	Stickstoff und DOC	
VILLAREPOS	Chandon	ja	Phosphor	ja	Stickstoff, Phosphor, DOC und GUS	
VILLARS-SUR-GLANE	Glâne	ja	Stickstoff und Phosphor	ja	Stickstoff	
ZUMHOLZ	Sense	nein		ja	DOC und GUS	

¹Dissolved organic Matter: gelöster organischer Kohlenstoff

²Gesamte ungelöste Stoffe